2009年丹东市初中毕业生毕业升学考试
数学试卷
考试时间:120分钟 试卷满分:150分 题号 一 二 三 四 五 六 七 八 总分 得分 得分 评卷人 一 、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案前的字 母填入相应表格内,每小题3分,共24分)
题号 答案
1 2 3 4 5 6 7 8 1.某天的最高气温是7℃,最低气温是5℃,则这一天的最高气温与最低气温的差是( ) A.2℃ B.2℃ E
D
C.12℃ D.12℃
2.如图1,已知直线AB、CD相交于点O,OA平分∠EOC,
A B ∠EOC=110°,则∠BOD的度数是( ) O A.25° B.35°
图1 C C.45° D.55°
3.下列图形中既是中心对称图形又是轴对称图形的是( ) y A. B. C. D. 2 m 4.三根长度分别为3cm,7cm,4cm的木棒能围成三角形的事件是( ) 1 A.必然事件 B.不可能事件
2 10 1 2 x C.不确定事件 D.以上说法都不对
12 5.如图2,直线m是一次函数ykxb的图象,则k的值是( ) A.1 B.2
图2 C.1 D.2
6.受全球金融危机的影响,2008年某家电商城的销售额由第二季度的800万元下降到第四季度的648万元,则该商城第三、四季度的销售额平均下降的百分率为( ) A.10% B.20% C.19% D.25% 7.用若干个小立方块搭一个几何体,使得它的左视图 和俯视图如图3所示,则所搭成的几何体中小立方 块最多有( )
A.15个 B.14个
俯视图 左视图
C.13个 D.12个
图3
8.如图4,从矩形纸片AMEF中剪去矩形BCDM后,动点P从点B出发,沿BC、CD、DE、EF运动到
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
点F停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x 的函数图象如图5所示,则图形ABCDEF的面积是( )
A.32 B.34 C.36 D.48
y
E F
D C
O 4 7 9 17 x M A B
图4 图5 得分 评卷人 二、填空题(每小题3分,共24分)
9.分解因式:3a227 .
10.为了解初三学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下: 视力 人数(人) 6 15 5 10 3 4 7 这组数据的中位数是 .
11.已知:平面直角坐标系中有一点A(2,1),若将点A向左平移4个单位,再向下平移2个单位得到
点A1,则点A1的坐标是 .
12.已知:扇形OAB的半径为12厘米,∠AOB=150°,若由此扇形围成一个圆锥的侧面,则这个圆锥
底面圆的半径是 厘米.
13.如图6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋
子 枚.
O D A C
B 图案1 图案2 图案3
图7 图6
……14.已知:如图7,CD是⊙O的直径,点A在CD的延长线上,AB切⊙O于点B,若∠A=30°,OA=
10,则AB= .
m1的解是负数,则m的取值范围是 . x21
16.已知:点A(m,m)在反比例函数y的图象上,点B与点A关于坐标轴对称,以AB为边作等
x
15.关于x的方程
边△ABC,则满足条件的点C有 个. 得分 评卷人 三、(每小题8分,共16分)
计算: 32(π1)04sin45°(1)1 17.
3
18.如图8,小芳家的落地窗(线段DE)与公路(直线PQ)互相平行,她每天做完作业后都会在点A
处向窗外的公路望去.
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
得分 (1)请在图中画出小芳能看到的那段公路并记为BC.
(2)小芳很想知道点A与公路之间的距离,于是她想到了一个办法.她测出了邻家小彬在公路BC段上走过的时间为10秒,又测量了点A到窗的距离是4米,且窗DE的长为3米,若小彬步行的平均速度为1.2米/秒,请你帮助小芳计算出点A到公路的距离. P Q E D
A 图8
评卷人 四、(每小题10分,共20分)
19.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表(表1)和扇形统
计图(图9)如下: 命中环数 命中次数
10 9 3 8 2 7 表1
(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;
7环 (2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如 10% 9环 30% 果只能选一人参加比赛,你认为应该派谁去?并说明理由.
2221 (参考资料: sx1xx2xxnxn)
2图9
20.奥运会期间,为了增进与各国的友谊,华联商厦决定将具有民族风情的中国结打8折销售,汤姆先
生用160元钱买到的中国结比打折前花同样多的钱买到的中国结多2个,求每个中国结的原价是多少元?
得分 评卷人 五、(每小题10分,共20分)
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
21.法航客机失事引起全球高度关注,为调查失事原因,巴西军方派出侦察机和搜救船在失事海域同时
沿同一方向配合搜寻飞机残骸(如图10).在距海面900米的高空A处,侦察机测得搜救船在俯角为
30°的海面C处,当侦察机以1503米/分的速度平行海面飞行20分钟到达B处后,测得搜救船在俯角为60°的海面D处,求搜救船搜寻的平均速度(.结果保留三个有效数字,参考数据:2≈1.414,
3≈1.732).
A 30° C 图10
B 60° E D 22.“五·一”期间,中国最美的边境城市丹东吸引了许多外地游客.小刚也随爸爸来丹游玩,由于仅有
两天的时间,小刚不能游览所有风景区.于是爸爸让小刚第一天从A.青山沟风景区、B.凤凰山风景区中任意选择一处游玩;第二天从C.虎山长城、D.鸭绿江、E.大东港中任意选一处游玩. (1)请用树状图或列表法说明小刚所有可能选择的方式 (用字母表示); (2)在(1)问的选择方式中,求小刚恰好选中A和D这两处的概率.
得分 评卷人 六、(每小题10分,共20分)
23.已知:如图11,等腰梯形ABCD中,AD∥BC,AB=DC,点P是腰DC上的一个动点(P与D、C
不重合),点E、F、G分别是线段BC、PC、BP的中点. (1)试探索四边形EFPG的形状,并说明理由;
(2)若∠A=120°,AD=2,DC=4,当PC为何值时,四边形EFPG是矩形?并加以证明. A D P
G F
B C E
图11
24.某校组织七年级学生到军营训练,为了喝水方便,要求每个学生各带一只水杯,几个学生可以合带
一个水壶.可临出发前 ,带队老师发现有51名同学没带水壶和水杯,于是老师拿出260元钱并派
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
两名同学去附近商店购买.该商店有大小不同的甲、乙两种水壶,并且水壶与水杯必须配套购买.每个甲种水壶配4只杯子,每套20元;每个乙种水壶配6只杯子,每套28元.若需购买水壶10个,设购买甲种水壶x个,购买的总费用为y(元).
(1)求出y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)请你帮助设计所有可能的购买方案,并写出最省钱的购买方案及最少费用. 得分 评卷人 七、(本题12分)
25.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图
12),连结BD、MF,若此时他测得BD=8cm,∠ADB=30°. (1)试探究线段BD与线段MF的关系,并简要说明理由; D C M E
F B A
图12
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图13),设旋转角为(0°<<90°),当△AFK为等腰三角形时,请直接写出旋转角的度数;
D M
B1 B
K F D1
A 图13
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图14),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
----完整版学习资料分享----
M2
N D M P 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
得分 评卷人 八、(本题14分)
.已知:在平面直角坐标系中,抛物线yax2x3(a0)交x轴于A、B两点,交y轴于点C,26
且对称轴为直线x2.
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:
探究一:如图15,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,
求出W的最大值和此时t的值;如果没有,说明理由;
探究二:如图16,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的
坐标;如果不存在,请说明理由. (参考资料:抛物线yaxbxc(a0)对称轴是直线x
y D A O C B x A O D y C B x 2b) 2a图15
图16
2009年丹东市初中毕业生毕业升学考试数学试题
参考答案及评分标准
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
一、选择题 题号 得分 二、填空题
9.3(a3)(a3) 10.4.7 11.(2,1) 12.5 13.302 14.53 15.m2且m0 16.8 三、(每小题8分,共16分)
1 C 2 D 3 B 4 B 5 D 6 A 7 B 8 C 117.计算:32(π1)4sin45°
301 421423 ································································· 4分 2 421223 ···································································· 6分 622 ················································································· 8分 18.(1)如图,线段BC就是小芳能看到的那段公路. ··· 2分 (2)过点A作AM⊥BC,垂足为M,交DE于点N. ∵DE∥BC,∴34,1290°, P ∴AN⊥DE. ················································· 3分 又∵DAEBAC, ∴△ADE∽△ABC. ······································ 4分
∴
B 4 M C 2 N 1 Q
DEAN. ················································ 5分 A BCAM根据题意得:BC1.21012(米). ················ 6分
34又∵AN4米,DE3米,∴,∴AM16(米). ····················· 7分 12AM答:点A到公路的距离为16米. ································································· 8分
19.解:(1)(每空1分,共4分) 命中环数 命中次数 10 4 9 3 8 2 7 1 10环 40% 7环 10% 8环 20%
D 3 E (2)应该派甲去. ··················································· 5分 理由:x甲(104938271. ·· 7分 )9(环)
2S甲9环 30%
1101[4(109)23(99)22(89)21(79)2]1. 9分 1022因为甲、乙两人的平均成绩相同,而S甲S乙,说明甲的成绩比乙稳定.
所以应派甲去. ·······················································································10分 20.解:设每个中国结的原价为x元, ······························································· 1分
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
根据题意得
160160······················································································· 5分 2 ·
0.8xx解得 x20. ······················································································· 8分 经检验,x20是原方程的根. ·································································· 9分
答:每个中国结的原价为20元.·································································10分 21.
G F B 60°A 30° E
D C
过点C作CG⊥AE,垂足为G,过点D作DF⊥AE,垂足为F,得矩形CDFG. ∴CDGF,CGDF900(米) ························································· 2分 在Rt△AGC中,∵A30°,∴ACG60°.
∴AGCGtan60°9003(米). ·························································· 4分 同理,在Rt△BFD中,BFDFtan30°3003(米). ···························· 6分 ∵AB15032030003(米). ························································· 7分 ∴CDGFABBFAG24003(米). ··········································· 8分 ∴搜寻的平均速度为24003201203≈208(米/分). ··························· 9分 答:搜救船搜寻的平均速度为208米/分. ·····················································10分 (其它方法可参照此答案给分) 22.(1)解法一:
开始
A B 第一天
第二天 C D E C D E
所有可能出现的结果(A,C)(A,D)(A,E)(B,C)(B,D)(B,E) ∴小刚所有可能选择的方式有6种. ····························································· 7分 解法二: 第二天 第一天 A B C (A,C) (B,C) D (A,D) (B,D) E (A,E) (B,E) ∴小刚所有可能选择的方式有6种. ····························································· 7分 (2)∵一共有六种等可能的结果,而恰好选中A、D两处的可能性只有一种, ∴小刚恰好选中A和D这两处的概率为
1. ··················································10分 6M A D P F 23.解:(1)四边形EFPG是平行四边形. ······················· 1分
理由:∵点E、F分别是BC、PC的中点,
----完整版学习资料分享----
G 资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
∴EF∥BP. ························································ 2分
同理可证EG∥PC. ·············································· 3分 ∴四边形EFPG是平行四边形. ································· 4分 (2)方法一:当PC3时,四边形EFPG是矩形. ······ 5分 证明:延长BA、CD交于点M.
∵AD∥BC,ABCD,BAD120°,∴ABCC60°. ∴M60°,∴△BCM是等边三角形. ·················· 7分 ∵MAD180°120°60°,∴ADDM2. ∴CMDMCD246. ······························· 8分
∵PC3,∴MP3,∴MPPC,∴BP⊥CM即BPC90°. 由(1)可知,四边形EFPG是平行四边形, ∴四边形EFPG是矩形. ··········································································10分 方法二:当PC3时,四边形EFPG是矩形. ·············································· 5分 证明:延长BA、CD交于点M.由(1)可知,四边形EFPG是平行四边形. 当四边形EFPG是矩形时,BPC90°.
M ∵AD∥BC,BAD120°,∴ABC60°.
∵ABCD,∴CABC60°.
A D ∴PBC30°且△BCM是等边三角形. ·················· 7分
1····· 8分 CM. ·
P 2G F 同方法一,可得CMDMCD246,
B C E 1∴PC63.
2即当PC3时,四边形EFPG是矩形. ······················································10分
∴ABPPBC30°,∴PCPM(其它方法可参照此答案给分)
24.解:(1)y20x28(10x)8x280.
∴y与x的函数关系式为y8x280. ····················································· 3分
(2)4x6(10x)≥51 ··································································· 5分
20x28(10x)≤260解得2.5≤x≤4.5. ················································································ 6分 ∵x为非负整数,∴x3或4. ∴有两种购买方案,
第一种:买甲种水壶3个,乙种水壶7个; 第二种:买甲种水壶4个,乙种水壶6个. ···················································· 8分 ∵y8x280,80, ∴y随x的增大而减小.
∴当x4时,y84280248(元). ··············································· 9分 答:有两种购买方案.第一种:买甲种水壶3个,乙种水壶7个; 第二种:买甲种水壶4个,乙种水壶6个.
其中最省钱的方案是第二种,最少费用是248元. ··········································10分
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
(其它方法可参照此答案给分)
25.解:(1)BDMF,BD⊥MF. ·················· 1分
延长FM交BD于点N,
由题意得:△BAD≌△MAF.
∴BDMF,ADBAFM. ·················· 2分
C
N D M
E
又∵DMNAMF, F B
A
∴ADBDMNAFMAMF90°, ∴DNM90°,∴BD⊥MF. ······························································ 3分 (2)的度数为60°或15°(答对一个得2分) ·········································· 7分 (3)由题意得矩形PNA2A.设A2Ax,则PNx, 在Rt△A2M2F2中,∵F2M2FM8, ∴A2M24,A2F243,∴AF243x. ∵PAF290°,PF2A30°,
B
M2 N A2
D M P A
F2
F
3x. ∴APAF2tan30°43∴PDADAP4343x. 3∵NP∥AB,∴DNPB.
∵DD,∴△DPN∽△DAB. ························································ 9分 ∴
PNDP. ·······················································································10分 ABDA∴
x4434433x3,解得x623. ················································ 11分
即A2A623.
答:平移的距离是(623)cm. ·······························································12分 (其它方法可参照此答案给分)
26.解:(1)∵抛物线yaxx3(a0)的对称轴为直线x2.
2112,∴a, 2a41∴yx2x3. ··············································································· 2分
4∴∴D(2,·························································································· 3分 4). ·
----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
(2)探究一:当0t4时,W有最大值. ∵抛物线y12xx3交x轴于A、B两点,交y轴于点C, 4y D M C P B O x ∴A(6,0),B(2,0),C(0,3),
∴OA6,OC3. ································· 4分 当0t4时,作DM⊥y轴于M, 则DM2,OM4. ∵P(0,t),
∴OPt,MPOMOP4t. ∵S△PADS梯形OADMS△AOPS△DMP
A 111(DMOA)OMOAOPDMMP 222111 (26)46t2(4t)
222 122t ···················································································· 6分
∴Wt(122t)2(t3)18 ······························································· 7分 ∴当t3时,W有最大值,W最大值18. ··················································· 8分 探究二:
存在.分三种情况:
290°时,作DE⊥x轴于E,则OE2,DE4,DEA90°, ①当PDA1∴AEOAOE624DE. ∴DAEADE45°,ADy D A M C P1 B E O 2DE42,
PDAADE90°45°45°. ∴PDE11∵DM⊥y轴,OA⊥y轴,
∴DM∥OA,∴MDEDEA90°,
x P2 90°45°45°. ∴MDP1MDEPDE1DM2,PD∴PM2DM22. 11此时
OCOA3290°, ,又因为AOCPDA1PDAD41422,∴P2). ∴Rt△ADP1∽Rt△AOC,∴OP1OMPM11(0,----完整版学习资料分享----
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
90°时,存在点P1,使Rt△ADP∴当PDA11∽Rt△AOC,
此时P1点的坐标为(0,2). ···································· 10分(结论1分,过程1分) ②当P2AD90°时,则P2AO45°,
∴P2APA62OA2. 62,∴2OA6cos45°∵
AD42ADP2A,∴. OC3OCOA∴△P2AD与△AOC不相似,此时点P2不存在. ······· 12分(结论1分,过程1分) ③当AP3D90°时,以AD为直径作⊙O1,则⊙O1的半径r圆心O1到y轴的距离d4.∵dr,∴⊙O1与y轴相离. 不存在点P3,使AP3D90°.
∴综上所述,只存在一点P(0,2)使Rt△ADP与Rt△AOC相似. 14分(结论1分,过程1分) (其它方法可参照此答案给分)
AD22, 2
----完整版学习资料分享----
因篇幅问题不能全部显示,请点此查看更多更全内容