三角形的证明测试卷培优卷中考题
三角形的证明测试卷
一.选择题(共10小题共35分) 1.(2013•郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( ) A. 25° B. 30° C. 35° D. 40° 2.(2012•潍坊)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )海里.
1题 2题 3题 4题 A. B. C. 50 D. 25 25 25 3.(2011•贵阳)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是( ) A. 3.5 B. 4.2 C. 5.8 D. 7 4.(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( ) A. 6 B. 7 C. 8 D. 9 5.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
5题 7题 8题 A. 11 B. 5.5 C. 7 D. 3.5 6.(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( ) A. B. C. D.
7.(2007•芜湖)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,
AE=4,则CH的长是( ) A. 1 B. 2 C. 3 D. 4 8.(2011•泰安)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )
1
A.
B.
C. D. 6
9.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为( )
B′ A
C′ C
B
9题 10题 11题 A. 6 B. 12 C. 32 D. 64
10.如图所示,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连
接C′B,则C′B的长为( ) A.22 B.3 2C.31 D.1
二.填空题(共7小题共25分) 11.(2011•怀化)如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= . 12.(2011•衡阳)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为 .
12题 13题 14题 15 13.(2010•滨州)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为 . 14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 . 15.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度. 16.(2005•绵阳)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是 cm.
16题 17题
17.(2005•十堰)如图中的螺旋由一系列直角三角形组成,则第n个三角形的面积为 .
2
三.解答题(共5小题) 18.(2013•温州8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E. (1)求证:△ACD≌△AED; (2)若∠B=30°,CD=1,求BD的长.
19.(8)(2013•铜仁地区)如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:(1)BD=CE. (2) CE⊥BD
20.(2013•沈阳8分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF. (1)求证:BF=2AE;
(2)若CD=,求AD的长.
3
21.(2014•福州8分)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角) (1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答)
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
22.(2013北京8分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
A
A D D E
B
图1
C B
C 图2
4
因篇幅问题不能全部显示,请点此查看更多更全内容