您好,欢迎来到锐游网。
搜索
您的当前位置:首页SGW25N120

SGW25N120

来源:锐游网
SGW25N120

Fast IGBT in NPT-technology

• 40% lower Eoff compared to previous generation• Short circuit withstand time – 10 µs• Designed for:

- Motor controls- Inverter- SMPS

• NPT-Technology offers:

- very tight parameter distribution

- high ruggedness, temperature stable behaviour- parallel switching capability

CGEP-TO-247-3-1(TO-247AC)• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/TypeSGW25N120Maximum RatingsParameter

Collector-emitter voltageDC collector currentTC = 25°CTC = 100°C

Pulsed collector current, tp limited by TjmaxTurn off safe operating areaVCE ≤ 1200V, Tj ≤ 150°CGate-emitter voltage

Avalanche energy, single pulse

IC = 25A, VCC = 50V, RGE = 25Ω, start at Tj = 25°CShort circuit withstand timePower dissipationTC = 25°C

Operating junction and storage temperature

Soldering temperature, 1.6mm (0.063 in.) from case for 10s

Tj , Tstg--55...+150260

°C

1)

VCE1200V

IC25A

Eoff2.9mJ

Tj150°C

PackageTO-247AC

Ordering CodeQ67040-S4277

SymbolVCEIC

Value12004625

UnitVA

ICpuls-VGEEAStSCPtot

8484±2013010313

VmJµsW

VGE = 15V, 100V ≤VCC ≤1200V, Tj ≤ 150°C

1)

Allowed number of short circuits: <1000; time between short circuits: >1s.

1

Jul-02

Power Semiconductors

SGW25N120

Thermal ResistanceParameterCharacteristic

IGBT thermal resistance,junction – caseThermal resistance,junction – ambient

Electrical Characteristic, at Tj = 25 °C, unless otherwise specifiedParameter

Static Characteristic

Collector-emitter breakdown voltageCollector-emitter saturation voltage

V(BR)CESVGE=0V,

IC=1500µAVCE(sat)

VGE = 15V, IC=25ATj=25°CTj=150°C

Gate-emitter threshold voltageZero gate voltage collector current

VGE(th)ICES

IC=1000µA,VCE=VGE

VCE=1200V,VGE=0VTj=25°CTj=150°C

Gate-emitter leakage currentTransconductanceDynamic CharacteristicInput capacitanceOutput capacitance

Reverse transfer capacitanceGate charge

Internal emitter inductance

measured 5mm (0.197 in.) from caseShort circuit collector current

1)

SymbolRthJCRthJA

ConditionsMax. Value

0.4

UnitK/W

TO-247AC40

SymbolConditions

Value

min.1200

typ.-max.-

Unit

V

2.5-3

3.13.74

3.64.35

µA

--- ------

---20215016011022513240

3501400100-2600190130300--nCnHAnASpF

IGESgfsCissCossCrssQGateLEIC(SC)

VCE=0V,VGE=20VVCE=20V, IC=25AVCE=25V,VGE=0V,f=1MHz

VCC=960V, IC=25AVGE=15VTO-247AC

VGE=15V,tSC≤10µs100V≤VCC≤1200V,Tj ≤ 150°C

1)

Allowed number of short circuits: <1000; time between short circuits: >1s.

2

Jul-02

Power Semiconductors

SGW25N120

Switching Characteristic, Inductive Load, at Tj=25 °CParameter

IGBT CharacteristicTurn-on delay timeRise time

Turn-off delay timeFall timeTurn-on energyTurn-off energyTotal switching energy

td(on)trtd(off)tfEonEoffEts

Tj=25°C,

VCC=800V,IC=25A,VGE=15V/0V,RG=22Ω,1)

Lσ=180nH,1)

Cσ=40pF

Energy losses include“tail” and diodereverse recovery.

-------4540730302.21.53.7

6052950392.92.04.9

mJns

Symbol

Conditions

Value

min.

typ.

max.

Unit

Switching Characteristic, Inductive Load, at Tj=150 °CParameter

IGBT CharacteristicTurn-on delay timeRise time

Turn-off delay timeFall timeTurn-on energyTurn-off energyTotal switching energy

td(on)trtd(off)tfEonEoffEts

Tj=150°CVCC=800V,IC=25A,

VGE=15V/0V,RG=22Ω,1)

Lσ=180nH,1)

Cσ=40pF

Energy losses include“tail” and diodereverse recovery.

-------5036820423.82.96.7

6043990504.63.88.4

mJns

Symbol

Conditions

Value

min.

typ.

max.

Unit

1)

Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E.

Power Semiconductors

3Jul-02

100A

IcT80A

NRERUC 60A

RTC=80°COTCLELO40A

CT C=110°C,CI20A

Ic0A10Hz

100Hz1kHz10kHz100kHzf, SWITCHING FREQUENCY

Figure 1. Collector current as a function ofswitching frequency

(Tj ≤ 150°C, D = 0.5, VCE = 800V,VGE = +15V/0V, RG = 22Ω)

350W300WN250WOITPAIS200WISD REW150WOP,to100WtP50W0W25°C

50°C

75°C

100°C

125°C

TC, CASE TEMPERATURE

Figure 3. Power dissipation as a functionof case temperature(Tj ≤ 150°C)Power Semiconductors

SGW25N120

100A

tp=1µs15µsTNµRE10A

50sRUC200µs ROTC1msLE1A

LOC ,CIDC0.1A

1V10V100V1000V

VCE, COLLECTOR-EMITTER VOLTAGEFigure 2. Safe operating area(D = 0, TC = 25°C, Tj ≤ 150°C)

60A

50A

TNRE40A

RUC RO30A

TCLELOC20A

,CI10A

0A

25°C

50°C75°C100°C125°C

TC, CASE TEMPERATURE

Figure 4. Collector current as a function ofcase temperature

(VGE ≤ 15V, Tj ≤ 150°C)

4Jul-02

SGW25N120

80A70A60A

80A70A60A

IC, COLLECTOR CURRENT50A40A30A20A10A0A0V

15V13V11V 9V 7VIC, COLLECTOR CURRENTVGE=17VVGE=17V15V13V11V 9V 7V50A40A30A20A10A0A0V

1V2V3V4V5V6V7V1V2V3V4V5V6V7V

VCE, COLLECTOR-EMITTER VOLTAGE

Figure 5. Typical output characteristics(Tj = 25°C)VCE, COLLECTOR-EMITTER VOLTAGE

Figure 6. Typical output characteristics(Tj = 150°C)

70A60A

VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE80A

6V

5V

IC=50AIC, COLLECTOR CURRENT50A40A30A20A10A0A3V

4V

IC=25AIC=12.5ATj=+150°CTj=+25°CTj=-40°C3V

2V

1V

4V5V6V7V8V9V10V11V

0V

-50°C

0°C50°C100°C150°C

VGE, GATE-EMITTER VOLTAGE

Figure 7. Typical transfer characteristics(VCE = 20V)

Tj, JUNCTION TEMPERATURE

Figure 8. Typical collector-emitter

saturation voltage as a function of junctiontemperature(VGE = 15V)

Power Semiconductors

5Jul-02

1000ns

td(off)ESIMT GNtIHC100ns

fTIWS ,ttd(on)tr10ns

0A20A40A60A

IC, COLLECTOR CURRENT

Figure 9. Typical switching times as afunction of collector current(inductive load, Tj = 150°C,

VCE = 800V, VGE = +15V/0V, RG = 22Ω,dynamic test circuit in Fig.E )1000ns

td(off)ESIMT GNIH100ns

CTIWtSd(on) ,ttrtf10ns

-50°C

0°C50°C100°C150°C

Tj, JUNCTION TEMPERATURE

Figure 11. Typical switching times as afunction of junction temperature(inductive load, VCE = 800V,

VGE = +15V/0V, IC = 25A, RG = 22Ω,dynamic test circuit in Fig.E )

Power Semiconductors

SGW25N120

1000ns

td(off)ESIMT GNIHC100ns

TIWtd(on)S t,fttr10ns

0Ω

10Ω20Ω30Ω40Ω50Ω

RG, GATE RESISTOR

Figure 10. Typical switching times as afunction of gate resistor(inductive load, Tj = 150°C,

VCE = 800V, VGE = +15V/0V, IC = 25A,dynamic test circuit in Fig.E )

6V

GETA5V

LO VDLO4V

max.HSREHT 3V

typ.RTETIME2V

min.-ETAG ,)h1V

t(EGV0V

-50°C

0°C50°C100°C150°C

Tj, JUNCTION TEMPERATURE

Figure 12. Gate-emitter threshold voltageas a function of junction temperature(IC = 0.3mA)

6Jul-02

25mJ

*) Eon and Ets include lossesdue to diode recovery.Ets*ES20mJSOSL GY15mJ

ERon*NEE GNI10mJ

HCTIWEoffS ,E5mJ

0mJ

0A20A40A60A

IC, COLLECTOR CURRENT

Figure 13. Typical switching energy lossesas a function of collector current(inductive load, Tj = 150°C,

VCE = 800V, VGE = +15V/0V, RG = 22Ω,dynamic test circuit in Fig.E )8mJ

*) Eon and Ets include lossesdue to diode recovery.Ets*ES6mJ

SOSL GYRNE4mJ

Eon* EGNIHCTEIoffWS2mJ

,E0mJ-50°C

0°C50°C100°C150°C

Tj, JUNCTION TEMPERATURE

Figure 15. Typical switching energy lossesas a function of junction temperature(inductive load, VCE = 800V,

VGE = +15V/0V, IC = 25A, RG = 22Ω,dynamic test circuit in Fig.E )

Power Semiconductors

SGW25N120

10mJ

*) Eon and Ets include lossesdue to diode recovery.Ets*8mJ

ESSOSL GY6mJ

RNEEon*E GNI4mJ

EHoffCTIWS ,E2mJ

0mJ

0Ω10Ω20Ω30Ω40Ω50Ω

RG, GATE RESISTOR

Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, Tj = 150°C,

VCE = 800V, VGE = +15V/0V, IC = 25A,dynamic test circuit in Fig.E )

D=0.5CENDAPE10-1

K/W0.2IM L0.1ARMHE0.05TR,(K/W)τ, (s) TN0.074170.4990EI10-2

K/W0.020.208990.08994NS0.080650.00330RA0.010.036810.00038T ,R1R2CJhtZsingle pulseC1=τ1/R1C2=τ2/R210-3

K/W

1µs

10µs

100µs

1ms

10ms100ms

1s

tp, PULSE WIDTH

Figure 16. IGBT transient thermal

impedance as a function of pulse width(D = tp / T)

7Jul-02

20V

GE15V

TALOV RETT10V

IUEMCE=960V-ETAG ,EG5V

V0V0nC

100nC200nC300nC

QGE, GATE CHARGE

Figure 17. Typical gate charge(IC = 25A)

30µsME25µs

IT DNTA20µs

HSTIW T15µs

IUCRIC T10µs

ROHS ,c5µs

st0µs10V

11V12V13V14V15V

VGE, GATE-EMITTER VOLTAGE

Figure 19. Short circuit withstand time as afunction of gate-emitter voltage(VCE = 1200V, start at Tj = 25°C)Power Semiconductors

SGW25N120

CissCE1nF

NATICAPCA ,CCoss100pF

Crss0V

10V

20V

30V

VCE, COLLECTOR-EMITTER VOLTAGEFigure 18. Typical capacitance as afunction of collector-emitter voltage(VGE = 0V, f = 1MHz)

500A

TNRER400A

UC ROTC300A

LELOC TIUC200A

RIC TROH100A

S ,)cs(CI0A10V

12V14V16V18V20V

VGE, GATE-EMITTER VOLTAGE

Figure 20. Typical short circuit collectorcurrent as a function of gate-emitter voltage(100V≤VCE ≤1200V, TC = 25°C, Tj ≤ 150°C)

8Jul-02

TO-247ACPower Semiconductors

9SGW25N120

dimensions

symbol

[mm][inch]

min

maxmin

maxA4.785.280.18820.2079B2.292.510.09020.0988C1.782.290.07010.0902D1.091.320.04290.0520E1.732.060.06810.0811F2.673.180.10510.1252G0.76 max0.0299 max

H20.8021.160.81890.8331K15.6516.150.61610.6358L5.215.720.20510.2252M19.8120.680.77990.8142N3.5604.9300.14020.1941∅P

3.610.1421

Q

6.12

6.22

0.2409

0.2449

Jul-02

SGW25N120

i,vdiF/dttrr=tS+tFQrr=QS+QFtrrIF tSQStF10% IrrmtVRIrrmQFdirr /dt90% IrrmFigure C. Definition of diodesswitching characteristics

τ1Tj(t)p(t)r1r2τ2τnrnr1r2rnFigure A. Definition of switching times

TCFigure D. Thermal equivalentcircuitFigure B. Definition of switching losses

Figure E. Dynamic test circuitLeakage inductance Lσ=180nH,and stray capacity Cσ=40pF.

Power Semiconductors

10Jul-02

SGW25N120

Published by

Infineon Technologies AG i Gr.,Bereich KommunikationSt.-Martin-Strasse 53,D-81541 München

© Infineon Technologies AG 1999All Rights Reserved.Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.Information

For further information on technology, delivery terms and conditions and prices please contact your nearest InfineonTechnologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in questionplease contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written

approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure ofthat life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices orsystems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protecthuman life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Power Semiconductors

11Jul-02

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- ryyc.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务