Fast IGBT in NPT-technology
• 40% lower Eoff compared to previous generation• Short circuit withstand time – 10 µs• Designed for:
- Motor controls- Inverter- SMPS
• NPT-Technology offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour- parallel switching capability
CGEP-TO-247-3-1(TO-247AC)• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/TypeSGW25N120Maximum RatingsParameter
Collector-emitter voltageDC collector currentTC = 25°CTC = 100°C
Pulsed collector current, tp limited by TjmaxTurn off safe operating areaVCE ≤ 1200V, Tj ≤ 150°CGate-emitter voltage
Avalanche energy, single pulse
IC = 25A, VCC = 50V, RGE = 25Ω, start at Tj = 25°CShort circuit withstand timePower dissipationTC = 25°C
Operating junction and storage temperature
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
Tj , Tstg--55...+150260
°C
1)
VCE1200V
IC25A
Eoff2.9mJ
Tj150°C
PackageTO-247AC
Ordering CodeQ67040-S4277
SymbolVCEIC
Value12004625
UnitVA
ICpuls-VGEEAStSCPtot
8484±2013010313
VmJµsW
VGE = 15V, 100V ≤VCC ≤1200V, Tj ≤ 150°C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Jul-02
Power Semiconductors
SGW25N120
Thermal ResistanceParameterCharacteristic
IGBT thermal resistance,junction – caseThermal resistance,junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specifiedParameter
Static Characteristic
Collector-emitter breakdown voltageCollector-emitter saturation voltage
V(BR)CESVGE=0V,
IC=1500µAVCE(sat)
VGE = 15V, IC=25ATj=25°CTj=150°C
Gate-emitter threshold voltageZero gate voltage collector current
VGE(th)ICES
IC=1000µA,VCE=VGE
VCE=1200V,VGE=0VTj=25°CTj=150°C
Gate-emitter leakage currentTransconductanceDynamic CharacteristicInput capacitanceOutput capacitance
Reverse transfer capacitanceGate charge
Internal emitter inductance
measured 5mm (0.197 in.) from caseShort circuit collector current
1)
SymbolRthJCRthJA
ConditionsMax. Value
0.4
UnitK/W
TO-247AC40
SymbolConditions
Value
min.1200
typ.-max.-
Unit
V
2.5-3
3.13.74
3.64.35
µA
--- ------
---20215016011022513240
3501400100-2600190130300--nCnHAnASpF
IGESgfsCissCossCrssQGateLEIC(SC)
VCE=0V,VGE=20VVCE=20V, IC=25AVCE=25V,VGE=0V,f=1MHz
VCC=960V, IC=25AVGE=15VTO-247AC
VGE=15V,tSC≤10µs100V≤VCC≤1200V,Tj ≤ 150°C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Jul-02
Power Semiconductors
SGW25N120
Switching Characteristic, Inductive Load, at Tj=25 °CParameter
IGBT CharacteristicTurn-on delay timeRise time
Turn-off delay timeFall timeTurn-on energyTurn-off energyTotal switching energy
td(on)trtd(off)tfEonEoffEts
Tj=25°C,
VCC=800V,IC=25A,VGE=15V/0V,RG=22Ω,1)
Lσ=180nH,1)
Cσ=40pF
Energy losses include“tail” and diodereverse recovery.
-------4540730302.21.53.7
6052950392.92.04.9
mJns
Symbol
Conditions
Value
min.
typ.
max.
Unit
Switching Characteristic, Inductive Load, at Tj=150 °CParameter
IGBT CharacteristicTurn-on delay timeRise time
Turn-off delay timeFall timeTurn-on energyTurn-off energyTotal switching energy
td(on)trtd(off)tfEonEoffEts
Tj=150°CVCC=800V,IC=25A,
VGE=15V/0V,RG=22Ω,1)
Lσ=180nH,1)
Cσ=40pF
Energy losses include“tail” and diodereverse recovery.
-------5036820423.82.96.7
6043990504.63.88.4
mJns
Symbol
Conditions
Value
min.
typ.
max.
Unit
1)
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E.
Power Semiconductors
3Jul-02
100A
IcT80A
NRERUC 60A
RTC=80°COTCLELO40A
CT C=110°C,CI20A
Ic0A10Hz
100Hz1kHz10kHz100kHzf, SWITCHING FREQUENCY
Figure 1. Collector current as a function ofswitching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 800V,VGE = +15V/0V, RG = 22Ω)
350W300WN250WOITPAIS200WISD REW150WOP,to100WtP50W0W25°C
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a functionof case temperature(Tj ≤ 150°C)Power Semiconductors
SGW25N120
100A
tp=1µs15µsTNµRE10A
50sRUC200µs ROTC1msLE1A
LOC ,CIDC0.1A
1V10V100V1000V
VCE, COLLECTOR-EMITTER VOLTAGEFigure 2. Safe operating area(D = 0, TC = 25°C, Tj ≤ 150°C)
60A
50A
TNRE40A
RUC RO30A
TCLELOC20A
,CI10A
0A
25°C
50°C75°C100°C125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function ofcase temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4Jul-02
SGW25N120
80A70A60A
80A70A60A
IC, COLLECTOR CURRENT50A40A30A20A10A0A0V
15V13V11V 9V 7VIC, COLLECTOR CURRENTVGE=17VVGE=17V15V13V11V 9V 7V50A40A30A20A10A0A0V
1V2V3V4V5V6V7V1V2V3V4V5V6V7V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics(Tj = 25°C)VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics(Tj = 150°C)
70A60A
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE80A
6V
5V
IC=50AIC, COLLECTOR CURRENT50A40A30A20A10A0A3V
4V
IC=25AIC=12.5ATj=+150°CTj=+25°CTj=-40°C3V
2V
1V
4V5V6V7V8V9V10V11V
0V
-50°C
0°C50°C100°C150°C
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics(VCE = 20V)
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junctiontemperature(VGE = 15V)
Power Semiconductors
5Jul-02
1000ns
td(off)ESIMT GNtIHC100ns
fTIWS ,ttd(on)tr10ns
0A20A40A60A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as afunction of collector current(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 22Ω,dynamic test circuit in Fig.E )1000ns
td(off)ESIMT GNIH100ns
CTIWtSd(on) ,ttrtf10ns
-50°C
0°C50°C100°C150°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as afunction of junction temperature(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 25A, RG = 22Ω,dynamic test circuit in Fig.E )
Power Semiconductors
SGW25N120
1000ns
td(off)ESIMT GNIHC100ns
TIWtd(on)S t,fttr10ns
0Ω
10Ω20Ω30Ω40Ω50Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as afunction of gate resistor(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 25A,dynamic test circuit in Fig.E )
6V
GETA5V
LO VDLO4V
max.HSREHT 3V
typ.RTETIME2V
min.-ETAG ,)h1V
t(EGV0V
-50°C
0°C50°C100°C150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltageas a function of junction temperature(IC = 0.3mA)
6Jul-02
25mJ
*) Eon and Ets include lossesdue to diode recovery.Ets*ES20mJSOSL GY15mJ
ERon*NEE GNI10mJ
HCTIWEoffS ,E5mJ
0mJ
0A20A40A60A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy lossesas a function of collector current(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 22Ω,dynamic test circuit in Fig.E )8mJ
*) Eon and Ets include lossesdue to diode recovery.Ets*ES6mJ
SOSL GYRNE4mJ
Eon* EGNIHCTEIoffWS2mJ
,E0mJ-50°C
0°C50°C100°C150°C
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy lossesas a function of junction temperature(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 25A, RG = 22Ω,dynamic test circuit in Fig.E )
Power Semiconductors
SGW25N120
10mJ
*) Eon and Ets include lossesdue to diode recovery.Ets*8mJ
ESSOSL GY6mJ
RNEEon*E GNI4mJ
EHoffCTIWS ,E2mJ
0mJ
0Ω10Ω20Ω30Ω40Ω50Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 25A,dynamic test circuit in Fig.E )
D=0.5CENDAPE10-1
K/W0.2IM L0.1ARMHE0.05TR,(K/W)τ, (s) TN0.074170.4990EI10-2
K/W0.020.208990.08994NS0.080650.00330RA0.010.036810.00038T ,R1R2CJhtZsingle pulseC1=τ1/R1C2=τ2/R210-3
K/W
1µs
10µs
100µs
1ms
10ms100ms
1s
tp, PULSE WIDTH
Figure 16. IGBT transient thermal
impedance as a function of pulse width(D = tp / T)
7Jul-02
20V
GE15V
TALOV RETT10V
IUEMCE=960V-ETAG ,EG5V
V0V0nC
100nC200nC300nC
QGE, GATE CHARGE
Figure 17. Typical gate charge(IC = 25A)
30µsME25µs
IT DNTA20µs
HSTIW T15µs
IUCRIC T10µs
ROHS ,c5µs
st0µs10V
11V12V13V14V15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as afunction of gate-emitter voltage(VCE = 1200V, start at Tj = 25°C)Power Semiconductors
SGW25N120
CissCE1nF
NATICAPCA ,CCoss100pF
Crss0V
10V
20V
30V
VCE, COLLECTOR-EMITTER VOLTAGEFigure 18. Typical capacitance as afunction of collector-emitter voltage(VGE = 0V, f = 1MHz)
500A
TNRER400A
UC ROTC300A
LELOC TIUC200A
RIC TROH100A
S ,)cs(CI0A10V
12V14V16V18V20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collectorcurrent as a function of gate-emitter voltage(100V≤VCE ≤1200V, TC = 25°C, Tj ≤ 150°C)
8Jul-02
TO-247ACPower Semiconductors
9SGW25N120
dimensions
symbol
[mm][inch]
min
maxmin
maxA4.785.280.18820.2079B2.292.510.09020.0988C1.782.290.07010.0902D1.091.320.04290.0520E1.732.060.06810.0811F2.673.180.10510.1252G0.76 max0.0299 max
H20.8021.160.81890.8331K15.6516.150.61610.6358L5.215.720.20510.2252M19.8120.680.77990.8142N3.5604.9300.14020.1941∅P
3.610.1421
Q
6.12
6.22
0.2409
0.2449
Jul-02
SGW25N120
i,vdiF/dttrr=tS+tFQrr=QS+QFtrrIF tSQStF10% IrrmtVRIrrmQFdirr /dt90% IrrmFigure C. Definition of diodesswitching characteristics
τ1Tj(t)p(t)r1r2τ2τnrnr1r2rnFigure A. Definition of switching times
TCFigure D. Thermal equivalentcircuitFigure B. Definition of switching losses
Figure E. Dynamic test circuitLeakage inductance Lσ=180nH,and stray capacity Cσ=40pF.
Power Semiconductors
10Jul-02
SGW25N120
Published by
Infineon Technologies AG i Gr.,Bereich KommunikationSt.-Martin-Strasse 53,D-81541 München
© Infineon Technologies AG 1999All Rights Reserved.Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.Information
For further information on technology, delivery terms and conditions and prices please contact your nearest InfineonTechnologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in questionplease contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure ofthat life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices orsystems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protecthuman life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
11Jul-02
因篇幅问题不能全部显示,请点此查看更多更全内容