Minireview
Oligonucleotideprimers,probesandmolecularmethodsfortheenvironmentalmonitoringofmethanogenicarchaea
TakashiNarihiro1andYujiSekiguchi2*1
InternationalPatentOrganismDepositary(IPOD)and2
Bio-medicalResearchInstitute,NationalInstituteofAdvancedIndustrialScienceandTechnology(AIST),Tsukuba,Ibaraki305-8566,Japan.Summary
Fortheidentificationandquantificationofmethano-genicarchaea(methanogens)inenvironmentalsamples,variousoligonucleotideprobes/primerstar-getingphylogeneticmarkersofmethanogens,suchas16SrRNA,16SrRNAgeneandthegeneforthea-subunitofmethylcoenzymeMreductase(mcrA),havebeenextensivelydevelopedandcharac-terizedexperimentally.Theseoligonucleotidesweredesignedtoresolvedifferentgroupsofmethanogensatdifferenttaxonomiclevels,andhavebeenwidelyusedashybridizationprobesorpolymerasechainreactionprimersformembranehybridization,fluores-cenceinsituhybridization,rRNAcleavagemethod,genecloning,DNAmicroarrayandquantitativepoly-merasechainreactionforstudiesinenvironmentalanddeterminativemicrobiology.Inthisreview,wepresentacomprehensivelistofsucholigonucleotideprobes/primers,whichenableustodeterminemetha-nogenpopulationsinanenvironmentquantitativelyandhierarchically,withexamplesofthepracticalapplicationsoftheprobesandprimers.Introduction
Methanogenicarchaea(methanogens)arestrictlyanaerobicmicroorganismsproducingmethaneasaresultoftheiranaerobicrespiration(Schink,1997;Thauer,1998).Formethanogenesis,theycanutilizealimitednumberofsubstratessuchascarbondioxide,acetateand
Received6July,2010;accepted12November,2010.*Forcorrespon-dence.E-maily.sekiguchi@aist.go.jp;Tel.(+81)298617866;Fax(+81)2986100.
methyl-group-containingcompoundsunderanoxiccondi-tions(LiuandWhitman,2008).Mostoftheknownmetha-nogensarehydrogenotrophsreducingcarbondioxidetoformmethane;amongthem,formateisalsooftenutilizedastheelectrondonorinsteadofhydrogen.Someofthehydrogenotrophicmethanogenscanalsoutilizesecond-aryalcoholssuchas2-propanolastheelectrondonor.Acetateisanimportantintermediatesubstanceintheanaerobicdecompositionoforganicmatter,andisgener-allyexclusivelyutilizedbylimitedgroupsofmethanogenstoformmethaneunderanoxicconditions,whereexternalelectronacceptorsotherthancarbondioxideareunavail-able.Methyl-group-containingcompounds,suchasmethanolandmethylamines,arealsoutilizedbysomemethanogensthroughdisproportionationofmethylgroups.
Methanogensarefrequentlyfoundinanoxicenviron-ments,suchasricepaddyfields(Iinoetal.,2010;Sakaietal.,2010),wetlands(Cadillo-Quirozetal.,2009;Bräueretal.,2010),permafrost(Krivushinetal.,2010;Shcherbakovaetal.,2010),landfills(Laloui-Carpentieretal.,2006),subsurfaces(Doerfertetal.,2009;Mochi-maruetal.,2009)andruminants(Freyetal.,2009),whichareknowntobethemajorsourcesofatmosphericmethane.Ithasbeenestimatedthattheannualglobalemissionofmethaneis500–600Tg,andatmosphericmethaneconcentrationhasrisenthreefoldoverthepast200years(LiuandWhitman,2008).Withtheincreasedinterestsinglobalclimatechangeandenvironmentalissues,studiesonthediversityandecophysiologicalfunc-tionsofmethanogensinsuchenvironmentshavebeenextensivelyconductedusingcultivation-dependentandcultivation-independentapproaches(LiuandWhitman,2008).Inadditiontosuchenvironments,methanogensplaykeyrolesinfieldsofanaerobicdigestiontechnology,whichiswidelyusedasameansfortreatingmunicipalandindustrialwaste/wastewatercontaininghighlevelsoforganiccompounds(Sekiguchi,2006;NarihiroandSekiguchi,2007;Talbotetal.,2008;Tabatabaeietal.,2010).Methanogensareoftencriticalcomponentsofsuchbioconversionsystems,resultingintherecoveryof
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd
2T.NarihiroandY.Sekiguchi
gaseousmethanefromthosewastesasreusableenergyresource.Tobettermanagethebioconversionsystemsandachieveahigherefficiencyinremovingorganiccom-poundsinwastes,methanogensinthesesystemshavebeenextensivelystudiedandthequantitativemonitoringofsuchmethanogenicpopulationsinthesesystemshasbeenconducted(NarihiroandSekiguchi,2007).
Toexploretheecologicalsignificanceofmethanogensinthesenaturalandengineeredecosystems,identifica-tionandquantificationtechniquesfordifferentmethano-gengroupsareindispensable.Forthepurpose,analysesofmembranelipid(Weijersetal.,2004;Strapocetal.,2008),autofluorescence(Neuetal.,2002;Tungetal.,2005;Mochimaruetal.,2007),activitymeasurement(Lehmann-Richteretal.,1999;Weijersetal.,2004)andimmunoenzymaticprofiling(Visseretal.,1991;SorensenandAhring,1997)havebeenused.Inadditiontothesemethods,cultivation-independent,nucleicacid-basedanalysisbyusingoligonucleotideprobe/primers,suchasmembranehybridization,fluorescenceinsituhybridiza-tion(FISH),genecloning,quantitativepolymerasechainreaction(qPCR),andcleavagemethodwithribonucleaseH(RNaseH)weremostwidelyandfrequentlyusedasmeanstodetectandquantifymethanogensmorespecifi-callyandaccurately.Inthisreview,wepresentacata-logueofpreviouslydevelopedoligonucleotideprobes/primerstargetinggenesofmethanogens.Particularemphasisisplacedontheprobes/primersfor16SrRNA,16SrRNAgeneandthegeneforthea-subunitofmethylcoenzymeMreductase(mcrA),whicharegenerallyusedforthetaxonomicclassificationofmethanogens(Friedrich,2005;LiuandWhitman,2008).Phylogenyofmethanogens
AllthemethanogensisolatedandcharacterizedtodatehavebeenclassifiedintothephylumEuryarchaeotaofthedomainArchaea(Garrityetal.,2007).Theyareassignedinto33generaoftheclasses‘Methanomicrobia’,Metha-nobacteria,MethanococciandMethanopyri(Fig.1,Table1).Theclass‘Methanomicrobia’isthemostphylo-geneticallyandphysiologicallydiversegroupofmethano-gensconsistingofthreeorders(Methanosarcinales,MethanomicrobialesandMethanocellales);23generabelongingtosevenfamilies(Fig.1,Table1).WithintheorderMethanosarcinales,thegeneraMethanosarcinaandMethanosaetaareknowntoplayakeyroleintheconver-sionofacetateintomethaneinvariousanaerobicenviron-ments,andtherestareknowntometabolizerelativelybroadrangesofsubstrates,suchashydrogen,methanolandmethylamines(GarrityandHolt,2001).KnownmembersoftheorderMethanomicrobialesareallhydro-genotrophs,andsomeofthemareoftenobservedinanaerobicenvironmentsasimportanthydrogenscaven-gers(LiuandWhitman,2008).MembersoftheclassMethanobacteria,consistingofthefamiliesMethanobac-teriaceaeandMethanothermaceae,arerecognizedasimportanthydrogenotrophsthathavealsobeenwidelyfoundinanaerobicecosystems(GarrityandHolt,2001).Methanobacteriaceaecomprisesfourgenera,Methano-bacterium,Methanosphaera,MethanobrevibacterandMethanothermobacter.TheclassMethanococciincludesthefamiliesMethanococcaceaeandMethanocaldococ-caceae,whicharewidelydistributedinnaturalecosystemssuchasmarinesedimentsanddeepseageothermalsedi-ments(LiuandWhitman,2008).TheclassMethanopyriconsistsofsolelythegenusMethanopyrus,ahyperther-mophilic,hydrogenotrophicmethanogenisolatedfromthedeep-seahydrothermalfield(Takaietal.,2008).
Theisolationandcharacterizationofnovelmethano-gensfromvariousecosystemsareongoing,andthedescriptionsofsuchmethanogenshavebeencarriedoutatanencouragingrate.Recently,hydrogenotrophicmethanogens,whicharenovelathightaxonomiclevels(MethanocellapaludicolaandMethanocellaarvoryzae),havebeenisolated,andthenovelorderMethanocellaleswasproposed(Sakaietal.,2008;2010).Thesemethano-genshavelongbeenconsideredastheuncultivablemethanogengroup(RiceclusterI),andresponsibleforthemajorpartofmethanogenesisinricepaddysoil(Conradetal.,2006).Inaddition,novelhydrogenotrophicmetha-nogensassociatedwithpreviouslyuncultivatedphyloge-neticgroupsoftheorderMethanomicrobiales(formerlyknownasE1/E2orFencluster)wereisolatedfromanaero-bicbioreactors(Imachietal.,2008;Yashiroetal.,2009)andwetlands(Cadillo-Quirozetal.,2009;Bräueretal.,2010).NovelstrainsofthegeneraMethanofollis(Imachietal.,2009),Methanolobus(Doerfertetal.,2009;Mochi-maruetal.,2009),Methanospirillum(Iinoetal.,2010)andMethanobacterium(Krivushinetal.,2010;Shcherbakovaetal.,2010)havealsobeenreportedrecently.
Despitetheseeffortsincultivatingasyetuncultivablemethanogenspresentinenvironments,therearestillavastnumberofuncultivablearchaealtaxathatmayhavesimilarmetabolicfunctionsasthoseofknownmethano-gens.Forexample,16SrRNAgenetypesassignedintotheWSA2(orArcI)groupwerefrequentlyretrievedfrommethanogenicwaste/wastewatertreatmentsystems(SekiguchiandKamagata,2004;Chouarietal.,2005).TheWSA2groupisconsideredtobeanarchaealtaxonattheclasslevelwithnoculturedrepresentatives(Hugen-holtz,2002).However,ChouariandcolleagueshavefoundthatWSA2-relatedcellscanbeenrichedusingformate-orhydrogen-containingculturemedia,suggest-ingthattheyharbourmethanogenicactivity(Chouarietal.,2005).AnotherexamplesimilartotheRiceClusterIgroupisRiceClusterII(RC-II).MembersoftheRC-IIgroupwerealsoconsideredtobemethanogens,because
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens3
Genus
Methanoculleus marisnigri, M59134Methanoculleus submarinus, AF531178Methanoculleus chikugoensis, AB038795Methanoculleus thermophilus, AB065297Methanoculleus bourgensis, AY196674Methanoculleus palmolei, Y16382Methanoculleus receptaculi, DQ787476Methanolacinia paynteri, AY196678Methanoplanus petrolearius, U76631Methanoplanus limicola, M59143Methanomicrobium mobile, M59142Methanogenium marinum, DQ177344Methanogenium organophilum, M59131Methanofollis aquaemaris, AF262035Methanofollis formosanus, AY1862Methanofollis liminatans, Y128Methanofollis tationis, AF095272Methanofollis ethanolicus, AB371073Methanoregula boonei, DQ282124Methanolinea tarda, AB162774Methanosphaerula palustris, EU156000Methanospirillum hungatei, AY196683Methanocalculus halotolerans, AF033672Methanocalculus pumilus, AB008853Methanocalculus ensis, AF411470Methanocalculus chunghsingensis, AF347025Methanocorpusculum labreanum, AY260436Methanocorpusculum parvum, M59147Methanocorpusculum bavaricum, AY196676Methanolobus bombayensis, U20148Methanolobus vulcani, U20155Methanolobus tindarius, M59135Methanolobus profundi, AB370245Methanolobus oregonensis, U20152Methanolobus taylorii, U201Methanolobus zinderi, EU711413Methanomethylovorans hollandica, AF120163Methanomethylovorans thermophila, AY672821Methanococcoides alaskense, AY941801Methanococcoides burtonii, CP000300Methanohalophilus mahii, M59133Methanohalophilus portucalensis, AY290717Methanohalobium evestigatum, U20149Methanosalsum zhilinae, FJ224366Methanosarcina siciliae, U20153Methanosarcina acetivorans, M59137Methanosarcina thermophila, M59140Methanosarcina barkeri, AJ012094Methanosarcina mazei, AJ012095Methanosarcina lacustris, AF432127Methanosarcina baltica, AJ2388Methanosarcina semesiae, AJ012742Methanimicrococcus blatticola, AJ238002Methanosaeta thermophila, AB071701Methanosaeta concilii, NR_028242Methanosaeta harundinacea, AY817738Methermicoccus shengliensis, DQ787474Methanocella paludicola, AB196288Methanobacterium palustre, AF093061Methanobacterium subterraneum, X99044Methanobacterium formicicum, AF169245Methanobacterium alcaliphilum, DQ9335Methanobacterium bryantii, AY196657Methanobacterium ivanovii, AF095261Methanobacterium oryzae, AF028690Methanobacterium beijingense, AY350742Methanobacterium congolense, AF233586Methanobacterium aarhusense, AY386124Methanothermobacter thermoflexus, X99047Methanothermobacter thermophilus, X99048Methanothermobacter defluvii, X99046Methanothermobacter wolfeii, AB104858Methanothermobacter marburgensis, X153Methanothermobacter thermautotrophicus, AY196660Methanobrevibacter arboriphilus, AY196665Methanobrevibacter cuticularis, U41095Methanobrevibacter curvatus, U62533Methanobrevibacter filiformis, U82322Methanobrevibacter acididurans, AF242652Methanobrevibacter gottschalkii, U55238Methanobrevibacter thaueri, U55236Methanobrevibacter millerae, AY196673Methanobrevibacter smithii, U55233Methanobrevibacter woesei, U55237Methanobrevibacter ruminantium, AY196666Methanobrevibacter olleyae, AY615201Methanobrevibacter wolinii, U55240Methanosphaera stadtmanae, CP000102Methanocaldococcus fervens, AF056938Methanocaldococcus jannaschii, L77117Methanocaldococcus vulcanius, AF051404Methanocaldococcus indicus, AF7621Methanocaldococcus infernus, AF025822Methanotorris formicicus, AB100884Methanothermococcus okinawensis, AB057722Methanococcus aeolicus, DQ1951Methanococcus vannielii, AY196675Methanothermococcus thermolithotrophicus, M59128Methanothermus sociabilis, AF095273Methanothermus fervidus, M59145Methanopyrus kandleri, AE009439FamilyOrderClass
Methanoculleus
0.10MethanolaciniaMethanoplanusMethanomicrobiumMethanogenium
Methanomicrobiales
MethanofolisMethanoregulaMethanolinea
MethanosphaerulaMethanospirillumMethanocalculus
Methanomicrobiaceae
incertae sedisMethanospirillaceaeincertae sedis
MethanocorpusculumMethanocorpusculaceae
Methanomicrobia
Methanolobus
MethanomethylovoransMethanococcoidesMethanohalophilusMethanohalobiumMethanosalsum
Methanosarcinaceae
Methanosarcinales
Methanosarcina
MethanimicrococcusMethanosaetaMethermicoccusMethanocella
MethanosaetaceaeMethermicoccaceaeMethanocellaceae
Methanocellales
Methanobacterium
Methanothermobacter
Methanobacteriaceae
Methanobacteriales-1
Methanobacteria-1
Methanobrevibacter
MethanosphaeraMethanocaldococcusMethanotorris
Methanococcus
MethanothermococcusMethanothermusMethanopyrus
MethanococcaceaeMethanothermaceaeMethanopyraceae
Methanobacteriales-2Methanopyrales
Methanobacteria-2Methanopyri
Methanocaldococcaceae
Methanococcales
Methanococci
Fig.1.Phylogenyandtaxonomyofmethanogens.Theneighbour-joiningtreewasconstructedonthebasisof16SrRNAgenesequencesusingtheARBpackage(Ludwigetal.,2004)withthedataset(Yarzaetal.,2008)providedfromsilvadatabases(http://silva.mpi-bremen.de/),showingrepresentativespeciesofmethanogensthathavebeendescribedtodate.
the16SrRNAgeneclonesaffiliatedwiththisgroupwerefrequentlyobservedinmethanogenicenrichmentculturescontainingethanolasanelectrondonor,andbecausetheRC-IIgroupisalineagewithinthephylogeneticradiationoftheordersMethanosarcinalesandMethanomicrobiales(Lehmann-Richteretal.,1999).Ascanbenotedfromtheseexamples,thereisnodoubtthattheactualbiodi-versityofmethanogenswillbemuchexpandedinthe
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
4T.NarihiroandY.Sekiguchi
Table1.Oligonucleotideprobesandprimerstargetingthe16SrRNAgeneofmethanogens.
Probelength(mer)20182016151615201617181820171719182015152021182020161820
TargetgroupMostmethanogens
ProbenameArchf2bArchr1386A1fA1100rMet83FMet86FMet448FMet1027FMet1340R109f146f1324rARC344f25f1391rA24fA357fA329rA348rA693rMet630FMet803RA1040fARC344ARC915MER11068R
CMSMM1068m
Probesequence(5′–3′)a
TTCYGGTTGATCCYGCCRGAGCGGTGTGTGCAAGGAGCTCYGKTTGATCCYGSCRGAGTGGGTCTCGCTCGTTGACKGCTCAGTAACACGCTCAGTAACACGTGGGGTGCCAGCCGCCGC
GTCAGGCAACGAGCGAGACCCGGTGTGTGCAAGGAGACKGCTCAGTAACACGTGGSATAACCYCGGGAAACGCGAGTTACAGCCCWCRAACGGGGYGCAGCAGGCGCGACYGGTYGATYCTGCCRGGACGGGCGGTGTGTRCATCYGKTTGATCCYGSCRGACCCTACGGGGCGCAGCAGTGTCTCAGGTTCCATCTCCGCCCCRTAGGGCCYGGGGATTACARGATTTC
GGATTAGATACCCSGGTAGTGTTGARTCCAATTAAACCGCAGAGAGGWGGTGCATGGCCTCGCGCCTGCTGCICCCCGTGTGCTCCCCCGCCAATTCCTGGGCACGGGTCTCGCTATGCTTCACAGTACGAACGGATGCTTCACAGTACGAAC
Application
PCR(forward)PCR(reverse)
PCR(forward),DGGEPCR(forward),DGGEPCR(forward)PCR(forward)sequencingsequencingPCR(reverse)PCR(forward)PCR(forward)PCR(reverse)
PCR(forward),DGGEPCR(forward)PCR(reverse)
PCR(forward),DGGEPCR(forward),DGGEPCR(reverse),DGGEPCR(reverse),DGGEPCR(reverse),DGGEqPCR(forward),DGGEqPCR(reverse),DGGEPCR(forward),DGGEMH
PCR(reverse),DGGE,MH,FISHPCR(reverse)PCR(reverse)RNaseH
Reference
Skillmanetal.(2004)Skillmanetal.(2004)Embleyetal.(1992)Embleyetal.(1992)WrightandPimm(2003)WrightandPimm(2003)WrightandPimm(2003)WrightandPimm(2003)WrightandPimm(2003)Grosskopfetal.(1998)Marchesietal.(2001)Marchesietal.(2001)Casamayoretal.(2001)Dojkaetal.(1998)Barnsetal.(1994)Yuetal.(2008)Yuetal.(2008)Yuetal.(2008)Yuetal.(2008)Yuetal.(2008)Hooketal.(2009)Hooketal.(2009)
ReysenbachandPace(1995)Raskinetal.(1994b)Raskinetal.(1994b)Halesetal.(1996)Banningetal.(2005)Narihiroetal.(2009b)
ClassMethanomicrobiaOrderMethanocellalesFamilyMethanocellaceaeGenusMethanocella
OrderMethanomicrobiales
SANAE1136MG1200MG1200mM(SA/MI)355MMB282FMMB749FMMB832R298F586RF2SC668F2SC732AR934F
MCU1023TAQMG1200bMc412fMc578r
SMCUT1253F3SC984GMG1128GMM829SMPL623cSMPL623cSMPP1252dSMPP1252dF7SC1260MSP1025TAQNOBI109fNOBI633F6SC393eGMCP4F6SC393eGMCL4886A84SMSP129MSMX860MSSH859MSrr859MSMX860mMSL812FMSL860FMSL1159R
GTGTACTCGCCCTCCTCG
CGGATAATTCGGGGCATGCTGCCGGATAATTCGGGGCATGCTGGTAAAGTTTTCGCGCCTGATCGRTACGGGTTGTGGG
TYCGACAGTGAGGRACGAAAGCTGCACCTAACGCRCATHGTTTACGGAGCAAGAGCCCGGAGTCCAAGAGACTTAACAACCCATCCTACCCCCGAAGTACCCCTCTCGAAGCCGTTCTGGTGAGGCGAGGAATTGGCGGGGGAGCAC
GAATGATTGCCGGGCTGAAGACTCCCGGATAATTCGGGGCATGCTGCTGGGTGTCTAAAACACACCCAAATTGCCAGTATCTCTTAG
GCCTTTCGGCGTCGATACCCCATATCGCTGTCCTACCCGGCGTTCCGGAGAACAAGCTAGCTCGTAGTTACAGGCACACCTTCTCTTAAACGCCTGCAGGTTCTCTTAAACGCCTGCAGGCTTCTCAGTGTCGTTGCTCACTTCTCAGTGTCGTTGCTCA
TATCCTCACCTCTCGGTGTC
GAATGATAGTCGGGATGAAGACTCTAACTGCTCAGTAACACGTGATTGCCAGTTTCTCCTGGACAGGCACTCAGGGTTTCCGCCCTGCCCTTTCTTCACATGACAGGCACTCAGGGTTTCCCCCCGCCCTTTCTCCTGGTGTCTTCCGGTCCCTAGCCTGCCATATCCCCTTCCATAGGGTAGATTGGCTCGCTTCACGGCTTCCCTTCGCTTCACGGCTTCCCTTCGCTTCACGGCTTCCCTGGCTCGCTTCACGGCTTCCCTGTAAACGATRYTCGCTAGGTAGGGAAGCCGTGAAGCGARCCGGTCCCCACAGWGTACC
FISH
MH,FISHRNaseHMH
qPCR(forward)qPCR(probe)qPCR(reverse)qPCR(forward)qPCR(reverse)RNaseHRNaseH
qPCR(forward)qPCR(probe)qPCR(reverse)qPCR(forward)qPCR(reverse)RNaseHRNaseHRNaseH
FISH,RNaseHRNaseRNaseRNaseRNase
HHHH
1821221818242118202222202422231820202020202020202026171820202020222321181920202117
Sakaietal.(2007)Raskinetal.(1994b)Narihiroetal.(2009b)Ovreåsetal.(1997)Yuetal.(2005)Yuetal.(2005)Yuetal.(2005)
Franke-Whittleetal.(2009a)Franke-Whittleetal.(2009a)Narihiroetal.(2009b)Narihiroetal.(2009b)Shigematsuetal.(2003)Shigematsuetal.(2003)Shigematsuetal.(2003)Horietal.(2006)Horietal.(2006)
Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)Yanagitaetal.(2000)NarihiroNarihiroNarihiroNarihiro
etal.etal.etal.etal.
(2009b)(2009b)(2009b)(2009b)
FamilyMethanomicrobiaceaeGenusMethanoculleus
SpeciesM.thermophilus
GenusMethanofollisGenusMethanogeniumGenusMethanomicrobiumGenusMethanoplanusSpeciesM.limicola
SpeciesM.endosynbiosusSpeciesM.petroleariusGenusMethanolacinia
FamilyMethanospirillaceaeGenusMethanospirillumGenusMethanosphaerulaGenusMethanolinea
FamilyMethanocorpusculaceaeGenusMethanocorpusculumFamilyincertaesedisGenusMethanocalculusGenusMethanoregulaSpeciesM.booneiSpeciesM.formicicaOrderMethanosarcinales
RNaseH
qPCR(probe)qPCR(forward)
qPCR(reverse),FISHRNaseHRNaseHRNaseHRNaseHFISHFISHMHFISH
PCR(reverse)RNaseH
qPCR(forward)qPCR(probe)qPCR(reverse)
Narihiroetal.(2009b)Tangetal.(2005)Imachietal.(2008)Imachietal.(2008)Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)Bräueretal.(2006)Yashiroetal.(2009)Raskinetal.(1994b)Boetiusetal.(2000)Skillmanetal.(2004)Narihiroetal.(2009b)Yuetal.(2005)Yuetal.(2005)Yuetal.(2005)
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens5
Table1.cont.
Probelength(mer)
Targetgroup
FamilyMethanosaetaceaeGenusMethanosaeta
ProbenameProbesequence(5′–3′)aApplicationReference
SpeciesM.concilii
SpeciesM.thermophila
FamilyMethanosarcinaceae
GenusMethanimicrococcusGenusMethanosarcina
GenusMethanococcoidesGenusMethanohalobiumGenusMethanohalophilusGenusMethanolobusSpeciesM.psychrophilusGenusMethanomethylovoransGenusMethanosalsumFamilyMethermicoccaceaeGenusMethermicoccusClassMethanobacteriaOrderMethanobacteriales
MX825MX825mixMX1361
S-G-Msae-0332-a-A-22Mst702FMst753FMst862RMS1b
SAE761TAQSAE835R
S-F-Msaet-0387-S-a-21S-F-Msaet-00-A-a-31S-F-Msaet-0573-A-a-17Rotcl1MS1MS2MS5
MMX1273GTMS393mMs413fMs578rTMX745MS1414EelMS240fMsc380FMsc492FMsc828RR15Fg
FMSC394MS821mhGMIB12MS821SARCI551SARCI5MB1MB3MB4240F5RMB1b
SAR761TAQSAR835R
S-G-Msar-0450-S-a-19S-P-Msar-00-A-a-31S-G-Msar-05-S-a-20GMCO441GMHB842GMHP1258GMLB834R15FR15RGMSS261
TCGCACCGTGGCCGACACCTAGCTCGCACCGTGGCYGACACCTAGCACGTATTCACCGCGTTCTGTTTAGGTCCGGGATGCXCCACGTTAATCCTYGARGGACCACCA
ACGGCAAGGGACGAAAGCTAGGCCTACGGCACCRACMACCCGGCCGGATAAGTCTCTTGA
ACCAGAACGGACCTGACGGCAAGGGACAACGGTCGCACCGTGGCCGATAAGGGRAYCTCGAGTGCY
AGACCCAATAAHARCGGTTACCACTCGRGCCGGCCGRCTACAGACCCT
CTCCCGGCCTCGAGCCAGACCCGGATAAGTCTCTTGA
CTGAATGAGAGCGCTTTCTTTGGCCACGGTGCGACCGTTGTCGGGTTTTAGGAGATTCCCGTCACCCAGCACTCGAGGTCCCCCAGATGTGTAAAATACATCTGTTTCTGGCAGTATCCACCGACCCTTGCCGTCGGATCCGTTCTCACCCATACCTCACTCGGGCTATCAGGTTGTAGTGGGGAAACCGYGATAAGGGGATTAGCAAGGGCCGGGCAATAGCGARCATCGTTTACG
GCTACACGCGGGCTACAATGAATGCTGGCACTCGGTGTCCCGCCATGCCTGACACCTAGCGCACCTTTCGGTGTAGTTGCC
CGCCATGCCTGACACCTAGCGAGCGACCCAATAATCACGATCACTCCCGGTTCCAAGTCTGGCTTTGGTCAGTCCTCCGGCCAGACTTGGAACCGTTTATGCGTAAAATGGATT
CCTATCAGGTAGTAGTGGGTGTAATCCCGGAGGACTGACCAAACGGTTTGGTCAGTCCTCCGG
ACCAGAACGGGTTCGACGGTGAGGAGACACGGTCGCGCCATGCCTTAGCAAGGGCCGGGCAAGA
AGACCCAATAATCACGATCACCACTCGGGCCATCCCGGAGGACTGACCAAAACATGCCGTTTACACATGTGTCGGCACTAGGAACGGCCGTCCGTCACTTTTCAGTGTAGGTGAAACGGTCGCACCGTCCCAGGCTACACGCGGGCTACAATGA
AATTTAGGTTCGAACACGGCATGAAGTCGGCTAGCAGGTACCTTG
MH,FISHRNaseHFISH
MH,FISH
qPCR(forward)qPCR(probe)qPCR(reverse)qPCR(forward)qPCR(probe)qPCR(reverse)qPCR(forward)qPCR(probe)qPCR(reverse)FISHMHMH
MH,FISHRNaseHRNaseH
qPCR(forward)qPCR(reverse)RNaseHMH,FISHFISH
qPCR(forward)qPCR(probe)qPCR(reverse)qPCR(forward)RNaseHRNaseHRNaseHMH,FISHFISHFISHMHMH
MH,FISH
qPCR(forward)qPCR(reverse)qPCR(forward)qPCR(probe)qPCR(reverse)qPCR(forward)qPCR(probe)qPCR(reverse)RNaseHRNaseHRNaseHRNaseH
qPCR(forward)qPCR(reverse)RNaseH
23232022202217212421213117201721222020231820211818181821202020242019171519251820242119312020202022212520
Raskinetal.(1994b)Narihiroetal.(2009b)Crocettietal.(2006)
ZhengandRaskin(2000)Yuetal.(2005)Yuetal.(2005)Yuetal.(2005)
Shigematsuetal.(2003)Shigematsuetal.(2003)Shigematsuetal.(2003)Sawayamaetal.(2004)Sawayamaetal.(2004)Sawayamaetal.(2004)ZeppFalzetal.(1999)Rocheleauetal.(1999)Rocheleauetal.(1999)Rocheleauetal.(1999)Narihiroetal.(2009b)Narihiroetal.(2009b)Horietal.(2006)Horietal.(2006)
Narihiroetal.(2009b)Raskinetal.(1994b)Boetiusetal.(2000)Yuetal.(2005)Yuetal.(2005)Yuetal.(2005)
Zhangetal.(2008a)Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)Raskinetal.(1994b)
SorensenandAhring(1997)SorensenandAhring(1997)Rocheleauetal.(1999)Rocheleauetal.(1999)Rocheleauetal.(1999)
Franke-Whittleetal.(2009a)Franke-Whittleetal.(2009a)Shigematsuetal.(2003)Shigematsuetal.(2003)Shigematsuetal.(2003)Sawayamaetal.(2006)Sawayamaetal.(2006)Sawayamaetal.(2006)Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)Zhangetal.(2008a)Zhangetal.(2008a)Narihiroetal.(2009b)
FamilyMethanobacteriaceaeGenusMethanobrevibacterSpeciesM.ruminantiumSpeciesM.smithii
GenusMethanobacterium
MB310MB311Mbacf331MB1174MBT857FMBT929FMBT1196R1401RMB1175mMEB859fMbb1GMB406MBR1001ForwardReverseProbefMbiumGMBA755
S-F-Mbac-0398-S-a-20S-G-Mbac-0526-A-a-33S-G-Mbac-0578-A-a-22GMSP838
GenusMethanosphaera
CTTGTCTCAGGTTCCATCTCCGACCTTGTCTCAGGTTCCATCTCCCTTGTCTCAGGTTCCATCTCTACCGTCGTCCACTCCTTCCTCCGWAGGGAAGCTGTTAAGTAGCACCACAACGCGTGGATACCGTCGTCCACTCCTT
KTTTGGGTGGYGTGACGGGCCCGTCGTCCACTCCTTCCTCAGGGAAGCTGTTAAGTCCCTCCGCAATGTGAGAAATCGGCCATCCCGTTAAGAATGGCTCAGCCTGGTAATCATACACCGGGTATCTAATCCGGTTCCTCCCAGGGTAGAGGTGAAACCGTCAGAATCGTTCCAGTCAGCGTTCGTAGCCGGCYTGATGGCTTTCGTTACTCACCCCCAAGTGCCACTCTTAACGAAYGGCCACCACTTGAGCTGCCGGTGTTACCGC
AGACTTATCAARCCGGCTACGACCGGAACAACTCGAGGCCAT
MHFISHPCR
MH,FISH
qPCR(forward)qPCR(probe)qPCR(reverse)PCR(reverse)RNaseHFISHPCR
RNaseHFISH
qPCR(forward)qPCR(reverse)qPCR(probe)PCR
RNaseH
qPCR(forward)qPCR(reverse)qPCR(probe)RNaseH
22232022191818202018202019202022181820332220
Raskinetal.(1994b)Crocettietal.(2006)Skillmanetal.(2004)Raskinetal.(1994b)Yuetal.(2005)Yuetal.(2005)Yuetal.(2005)
Banningetal.(2005)Narihiroetal.(2009b)Boetiusetal.(2000)Skillmanetal.(2004)Narihiroetal.(2009b)Yanagitaetal.(2000)Armougometal.(2009)Armougometal.(2009)Armougometal.(2009)Skillmanetal.(2004)Narihiroetal.(2009b)Sawayamaetal.(2006)Sawayamaetal.(2006)Sawayamaetal.(2006)Narihiroetal.(2009b)
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
6T.NarihiroandY.Sekiguchi
Table1.cont.
Probelength(mer)211920192220322522192116222020202422
Targetgroup
GenusMethanothermobacter
Probename
Mt392fMt578r410F667R
GMTB1
S-F-Mbac-0398-S-a-20S-G-Mthb-09-S-a-32S-G-Mthb-05-A-a-25FMTH1183
M(CO/BA)377Mccr
MCC495FMCC686FMCC832R1202R
S-F-Mcc-1109-b-A-20MC504
FMCMT1044i
Probesequence(5′–3′)a
ACTCTTAACGGGGTGGCTTTTTCATGATAGTATCTCCAGCCTCTTAACGGGGTGGCTTTTCCCTGGGAGTACCTCCAGCAAAAGCGGCTACCACTTGAGCTCCCAAGTGCCACTCTTAACG
CGGACGCTTTAGGCCCAATAAAAGCGGCTACCGGGATTTCACCAGAGACTTATCAGTACGGACCTACCGTCGCCCGCACCCCCGTCGCACTTKCGTGWASTVGCAACATAGGGCACGGTAAGGGCTGGGCAAGT
TAGCGGTGRAATGYGTTGATCCCACCTAGTYCGCARAGTTTACCAGGRGATTCGGGGCATGCGCAACATGGGGCRCGGGTCT
GGCTGCTGGCACCGGACTTGCCCAGTCAACCTGGCCTTCATCCTGC
ApplicationqPCR(forward)qPCR(reverse)qPCR(forward)qPCR(reverse)RNaseH
qPCR(forward)qPCR(probe)qPCR(reverse)RNaseHMH
PCR(reverse)qPCR(forward)qPCR(probe)qPCR(reverse)PCR(reverse)MHFISHRNaseH
Reference
Horietal.(2006)Horietal.(2006)
Franke-Whittleetal.(2009a)Franke-Whittleetal.(2009a)Narihiroetal.(2009b)Sawayamaetal.(2006)Sawayamaetal.(2006)Sawayamaetal.(2006)Narihiroetal.(2009b)Ovreåsetal.(1997)Skillmanetal.(2004)Yuetal.(2005)Yuetal.(2005)Yuetal.(2005)
Banningetal.(2005)Nercessianetal.(2004)Crocettietal.(2006)Narihiroetal.(2009b)
FamilyMethanothermaceaeGenusMethanothermusClassMethanococciOrderMethanococcales
Family
MethanocaldococcaceaeGenusGenusFamilyGenus
MethanocaldococcusMethanotorris
MethanococcaceaeMethanococcus
GenusMethanothermococcusClassMethanopyriOrderMethanopyralesFamilyMethanopyraceaeGenusMethanopyrus
MC1109GMC728GMC231GMC416GMTL416GCAACATAGGGCACGGGTCTACCCGTTCCAGACAAGTGCCTTACTACCTAATCGAGCGCAGTCCTTGATAAAAGCCCATGCTGTGCTAGAAAAGCCTACGCAGTGCMHRNaseRNaseRNaseRNase
HHHH
2022222220Raskinetal.(1994b)Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)Narihiroetal.(2009b)
FMCMT1044i
S-G-Mp-0431-a-A-20GMPK1331GTCAACCTGGCCTTCATCCTGCTTACACCCCGGTACAGCCGCGGTTACTACCGATTCCACCTTCRNaseHMH
RNaseH222022Narihiroetal.(2009b)Nercessianetal.(2004)Narihiroetal.(2009b)
a.IUPACAmbiguityCodes:Y=CorT,R=AorG,K=GorT,S=CorG,W=AorT,M=AorC,H=AorCorT,V=AorCorGb.Archf2probecoversmembersoftheordersMethanomicrobiales,MethanosarcinalesandMethanococcales.c.SMPL623probecoversmembersoftheMethanoplanuslimicolaandM.endosynbiosus.d.SMPP1252probecoversmembersoftheMethanoplanuspetroleariusandMethanolacinia.e.F6SC393probecoversmembersofthegeneraMethanocorpusculumandMethanocalculus.
f.EelMS240probetargetsformembersofthegeneraMethanolobus,Methanohalophilus,MethanococcoidesandMethanomethylovorans.g.R15FprobecoversmembersofthegeneraMethanomethylovoransandMethanosarcinaandMethanolobuspsychrophilus.h.MS821mprobecoversmembersofthegeneraMethanimicrococcusandMethanosarcina.
i.FMCMT1044probecoversmembersofthefamilyMethanocaldococcaceaeandgenusMethanopyrus.MH,membranehybridization.
futureasthenumberofisolatedanddescribedmethano-genscontinuestoincrease.However,inthisreview,wemainlyfocusonthequantitativemonitoringtoolsforpre-viouslyculturedmethanogens.
Oligonucleotideprobes/primersfor16SrRNAanditsgene
16SrRNAanditsgenearethemostfrequentlyusedbiomarkersforthedeterminationofmethanogenicpopu-lationsinenvironments.16SrRNAgene-targetedprobes/primersfrequentlyusedforidentifyingmethanogensarelistedinTable1.Toentirelydescribemethanogenicpopu-lationsinecosystemsofinterest,16SrRNAgene-targetedprimersetsforawiderangeofmethanogentaxa,suchas146f/1324r(Marchesietal.,2001)andMet83F(Met86F)/Met1340R(WrightandPimm,2003),weredeveloped.Inaddition,anumberofoligonucleotideprobes/primersforspecificallyandhierarchicallydetectingmethanogensatdifferenttaxonomiclevelsweredesignedtoresolvediffer-entmethanogenpopulationsinwaste/wastewatertreat-
mentanaerobicsludges(Rocheleauetal.,1999;ZhengandRaskin,2000;Horietal.,2006;Ariesyadyetal.,2007;Franke-Whittleetal.,2009a;Narihiroetal.,2009a,b),therumen(Yanagitaetal.,2000;Skillmanetal.,2004),subseafloorsediments(Boetiusetal.,2000;Nercessianetal.,2004),sediments(Falzetal.,1999),thehumangut(Armougometal.,2009)andwetlands(Bräueretal.,2006;Zhangetal.,2008a,b)(Table1).Nowadays,almostalloftheknownculturablemethanogenscanbedetectedusingtheseprobes/primersattheclass,order,familygenusandevenspecieslevels;atthegenuslevel,itshouldbenotedthattheprobes/primerstargetingforthegeneraMethermicoccus,Methanomethylovorans,Metha-nocaldococcusandMethanotorrisarelacking.Oligonucleotideprobes/primersformcrAgeneThe16SrRNAgenehasbeenbestusedfortheidentifi-cationofmethanogensinenvironments.However,becausearchaeal16SrRNAgenesotherthanthoseofmethanogenscanalsooftenbedetectedusingPCR
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens7
Table2.OligonucleotidePCRprimersandprobestargetingthemcrAgene.
Probelength(mer)
Probe/primernamePCRprimerSet1Set2Set3Set4Set5Set6Set7Set8
Name
Direction/Application
Probesequence(5′–3′)ReferenceSpecificity
MCRfMCRrME1ME2MLfMLrME1ME2bMrtA_forMrtA_revMETH-fMETH-rmlasmcrA-revME3MFME3MF-eME2r’ME3
SAE716TAQSAR716TAQMCU716TAQmbac-mcrAmrtAmcpmspFenmsamsarMcvME0McvME3rMcvME1r
ForwardReverseForwardReverseForwardReverseForwardReverseForwardReverseForwardReverseForwardReverseForwardForwardReverseClonescreeningTaqManprobeTaqManprobeTaqManprobeTaqManprobeTaqManprobeTaqManprobeTaqManprobeTaqManprobeTaqManprobeTaqManprobeFISHFISHFISH
TAYGAYCARATHTGGYTACRTTCATNGCRTARTT
GCMATGCARATHGGWATGTCTCATKGCRTAGTTDGGRTAGT
GGTGGTGTMGGATTCACACARTAYGCWACAGCTTCATTGCRTAGTTWGGRTAGTTGCMATGCARATHGGWATGTC
TCCTGSAGGTCGWARCCGAAGAAAAACAATCAACCACGCACTCGTGAGCCCAATCGAAGGARTRYTMTWYGACCARATMTGYTGDGAWCCWCCRAAGTG
GGTGGTGTMGGDTTCACMCARTACGTTCATBGCGTAGTTVGGRTAGTATGTCNGGTGGHGTMGGSTTYACATGAGCGGTGGTGTCGGTTTCACTCATBGCRTAGTTDGGRTAGT
GGTGGHGTMGGWTTCACACA
AGGCCTTCCCCACTCTGCTTGAGGATAGAAATTCCCAACAGCCCTTGAAGACAGCAGTACCCGACCATGATGGAGGACARGCACCKAACAMCATGGACACWGTCCAACTCYCTCTCMATCAGRAGCGAGCCGAAGAAACCAAGTCTGGACCTGGTWCMACCAACTCACTCTCTGTCAAVCACGGYGGYMTCGGMAAGCCTTGGCRAATCCKCCGWACTTG
TCTCTCWGGCTGGTAYCTCTCCATGTACGGAAAAATTCGAAGAAGATCTGTGTGAAACCTACGCCACCGACATTCCAATCTGCATTGC
17172021322320232018201824242323212026262625242425212328202020
Springeretal.(1995)Halesetal.(1996)Lutonetal.(2002)Halesetal.(1996)
Shigematsuetal.(2004)Scanlanetal.(2008)Colwelletal.(2008)SteinbergandRegan(2008)Nunouraetal.(2008)
MostmethanogensMostmethanogensMostmethanogensMostmethanogens
MethanosphaerastadtmanaeMostmethanogensMostmethanogensMostmethanogens
Probe
Halesetal.(1996)
Shigematsuetal.(2004)Shigematsuetal.(2004)Shigematsuetal.(2004)SteinbergandRegan(2009)SteinbergandRegan(2009)SteinbergandRegan(2009)SteinbergandRegan(2009)SteinbergandRegan(2009)SteinbergandRegan(2009)SteinbergandRegan(2009)Kubotaetal.(2006)Kubotaetal.(2006)Kubotaetal.(2006)
MostofmethanogensGenusMethanosaetaGenusMethanosarcinaGenusMethanoculleus
FamilyMethanobacteriaceaeFamilyMethanobacteriaceaeFamilyMethanocorpusculaceaeFamilyMethanospirillaceaeGenusMethanoregulaFamilyMethanosaetaceaeGenusMethanosarcinaMethanococcusvannieliiMethanococcusvannieliiMethanococcusvannielii
Theprobes/primerslistedhere.
primersetsforawiderangeofmethanogentaxa,ithaslimitationinexclusivelydescribingthepopulationstruc-tureofmethanogens.Therefore,thereisaneedtodetectmethanogensonthebasisoffunctionalgenesthatarefoundtobeuniqueinmethanogenesis.SuchafunctionalgenefrequentlyusedismcrA.MethylcoenzymeMreduc-tase(mcr)istheterminalenzymeinvolvedinmethano-genesis,whichreducesthemethylgroupbondofmethylcoenzymeMwiththereleaseofmethane(Friedrich,2005).Becausethea-subunitofmcr(mcrA)anditsisoen-zymegene(mrtA)arehighlyconservedamongmethano-gens,andthatthesegenesarealmostexclusivelyfoundinmethanogens,mcrA/mrtA-baseddetectionofmethano-genshasbeenused.ThephylogenyofmethanogensdeterminedusingmcrA/mrtA(ortranslatedaminoacid)sequencesisingoodaccordancewiththosedeterminedusing16SrRNAgenesequences(Friedrich,2005).Pre-viouslyreported,frequentlyusedprobes/primersformcrA/mrtAarecategorizedintothreeprimersets,namely,MCR(Springeretal.,1995),ME(Halesetal.,1996)andML(Lutonetal.,2002)(Table2).Thetargetedregionsoftheforwardprimersofthesesetsareconsiderablydiffer-ent,whereasthoseofthereverseprimersarealmostthesame.TheMCRprimersetwasoriginallydesignedtodeterminethephylogenyofthefamilyMethanosarci-naceae(Springeretal.,1995).TheMEprimersetwasdesignedtodescribemethanogenicpopulationsinwet-
lands(Halesetal.,1996),forwhichthedifficultyinampli-fyingmcrA/mrtArelevanttoMethanosarcinaceaeandMethanobacteriaceaewaspointedoutlater(Luedersetal.,2001;Juottonenetal.,2006).TheMLprimersetwasdevelopedonthebasisofthemcrAsequencesobtainedfromfiveorders,comprisingMethanosarcinales,Methanomicrobiales,Methanobacteriales,Methanococ-calesandMethanopyrales(Lutonetal.,2002).Fourotherprimersetsandprobesforspecifictaxonomicgroupshavealsobeendevelopedrecently(Table2).
Assessingthebiodiversityofmethanogensin
complexcommunitiesbyPCRdetectionandcloningofmethanogengenes
Someofthenotedprimersfor16SrRNAandmethylcoenzymeMreductasegeneshaveoftenbeenusedforthedetectionandidentificationbyPCRtoexplorethediversityofmethanogensinenvironmentalsamples(Table3).Forexample,the146f/1324rprimersetformostofalltheknownmethanogenswasdesignedforthe16SrRNAgenecloneanalysisofdeepsedimentgashydratedeposit,andtheresultsshowedthatgeneclones(phylo-types)affiliatedwithMethanosarcinaandMethanobrevi-bacterpredominatedinthesediments(Marchesietal.,2001).Similarly,someoftheseprimersshowninTable1havebeenusedforPCRtoprofilemethanogenpopula-
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
8T.NarihiroandY.Sekiguchi
Table3.ExamplesofoligonucleotideprimersetsforPCR-basedanalysesformethanogens.
TypeofsampleAnaerobicprocess
ApplicationqPCR
Targetgene16SrRNA
Targetgroup
MethanomicrobialesMethanosarcinalesMethanobacterialesMethanococcalesMethanosarcinaceaeMethanosaeta
MethanocorpusculaceaeMethanospirillaceaeMethanosaetaceaeMethanobacteriaceaeMethanobacteriaceaeMethanoregulaMethanosarcinaMethanoculleusMethanosarcina
Methanothermobacter
MethanoculleusthermophilusMethanosaetathermophilaMethanothermobacterMethanosaetaMethanosarcinaMethanoculleusMethanosaetaMethanosarcinaMethanoculleusMethanosaeta
Probeset(forward/reverse/probe)aMMB282F/MMB832R/MMB749FMSL812F/MSL1159R/MSL860FMBT857F/MBT1196R/MBT929FMCC495F/MCC832R/MCC686FMsc380F/Msc828R/Msc492FMst702F/Mst862R/Mst753Fmlas/mcrA-rev/mcpmlas/mcrA-rev/mspmlas/mcrA-rev/msa
mlas/mcrA-rev/mbac-mcrAmlas/mcrA-rev/mrtAmlas/mcrA-rev/Fenmlas/mcrA-rev/msar298F/586R240F/5R410F/667RMc412f/Mc578rMs413f/Ms578rMt392f/Mt578r
MS1b/SAE835R/SAE761TAQMB1b/SAR835R/SAR761TAQAR934F/MG1200b/MCU1023TAQME1/ME2b/SAE716TAQME1/ME2b/SAR716TAQME1/ME2b/MCU716TAQS-F-Msaet-0387-S-a-21/S-F-Msaet-00-A-a-31/S-F-Msaet-0573-A-a-17S-G-Msar-0450-S-a-19/S-P-Msar-00-A-a-31/S-G-Msar-05-S-a-20S-F-Mbac-0398-S-a-20/S-G-Mbac-0526-A-a-33/S-G-Mbac-0578-A-a-22S-F-Mbac-0398-S-a-20/S-G-Mthb-09-S-a-32/S-G-Mthb-05-A-a-25
AR934F/MG1200b/MSP1025TAQNOBI109f/NOBI633109f/UNIV1492rb25f/1391r
25f/UNIV1492rb109f/UNIV1492rbmlas/mcrA-rev
ME1/ME2R15F/R15R
Met630F/Met803RA357f/A693rA24f/A329rA24f/A348r
Archf2/Archr1386Archf2/MSrr859
Mbacf331/Archr1386fMbium/Archr1386Archf2/Mccr
fMbb1/Archr1386forward/reverse/probeMrtA_for/MrtA_rev146f/1324r
METH-f/METH-r
ME3MFandME3MF-e/ME2r’355Fc/1068R109f/1401R344Fd/1202R
ARC344f/ARC915MLf/MLrA1f/A1100r109f/ARC915
Met83F(orMet86F)/Met1340RMCRf/MCRr
ReferenceYuetal.(2005)
qPCRmcrASteinbergandRegan(2009)
qPCR16SrRNAFranke-Whittleetal.(2009a)
qPCR16SrRNAHorietal.(2006)
qPCR16SrRNAShigematsuetal.(2003)
qPCRmcrAShigematsuetal.(2004)
qPCR16SrRNASawayamaetal.(2004)
qPCR16SrRNAMethanosarcinaSawayamaetal.(2006)
Methanobacterium
Methanothermobacter
qPCRqPCR
PCR-cloningPCR-cloning16S16S16S16SrRNArRNArRNArRNAMethanospirillumMethanolinea
MostmethanogensMostmethanogensTangetal.(2005)Imachietal.(2008)Narihiroetal.(2009a)Ariesyadyetal.(2007)
Anaerobicprocess,wetlandWetlandRumen
PCR-cloningPCR-cloningqPCR
qPCR,DGGEPCR,DGGE
mcrAmcrA
16SrRNA16SrRNA16SrRNA
Mostmethanogens
Mostmethanogens
MethanolobuspsychrophilusMostmethanogensMostmethanogens
SteinbergandRegan(2008)Halesetal.(1996)Zhangetal.(2008a)Hooketal.(2009)Yuetal.(2008)
PCR-typing16SrRNA
GastrointestinaltractDeepseasediments
Lakesediment
qPCR
PCR-cloningPCR-cloningqPCRqPCR
PCR-cloning16SrRNAmcrA
16SrRNAmcrAmcrA
16SrRNA
SulfurouslakeLandfill
CiliateendosymbiontRicepaddysoilPurecultures
PCR,DGGEPCR-cloningPCR,DGGEPCR,DGGEPCR-ribotypingPCR-cloning16SrRNAmcrA
16SrRNA16SrRNA16SrRNAmcrA
MostmethanogensMethanosarcinalesMethanobacterialesMethanobacteriumMethanococcalesMethanobrevibacter
MethanobrevibactersmithiiMostmethanogensMostmethanogensMostmethanogensMostmethanogensMethanomicrobiaMethanobacterialesMethanococcalesMostmethanogensMostmethanogensMostmethanogensMostmethanogensMostmethanogensMostmethanogens
Skillmanetal.(2004)
Armougometal.(2009)Scanlanetal.(2008)Marchesietal.(2001)Colwelletal.(2008)Nunouraetal.(2008)Banningetal.(2005)
Casamayoretal.(2001)Lutonetal.(2002)Embleyetal.(1992)Grosskopfetal.(1998)WrightandPimm(2003)Springeretal.(1995)
a.b.c.d.TheprimersequenceswereshowninTables1and2.
UNIV1492rreverseprimerwasoriginallyreferredfromLane(1991)asanuniversalprimer.
355FforwardprimerwasoriginallyreferredasM(SA/MI)355probedevelopedbyOvreåsetal.(1997)asshowninTable1.
344FforwardprimerwasoriginallyreferredasARC344probedevelopedbyRaskinandcolleagues(1994b)asshowninTable1.
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens9
tionsbydenaturinggradientgelelectrophoresis(DGGE)(e.g.(Casamayoretal.,2001;2002;Yuetal.,2005;2006;2008).Asexamples,WrightandPimm(2003)developedPCRandsequencingprimersforthe16SrRNAgeneofmethanogens,andusedthemfortheribotypingofmembersoftheclasses‘Methanomicrobia’andMethano-bacteria.ThedetectionofmethanogensbyPCRinlambrumensampleswasperformedusingmethanogen-specificprimerstargetingdifferenttaxonomiclevels(Skill-manetal.,2004).Banningandcolleagues(2005)designednovelreverseprimerstoprovidespecificampli-ficationofthe16SrRNAgenesof‘Methanomicrobia’(MethanomicrobialesandMethanosarcinales),Methano-bacterialesandMethanococcales,andsuccessfullyusedthemfortheidentificationofmethanogenicpopulationstructuresinlakesediments.
MassiveparallelsequencingofPCR-amplified16SrRNAgenesusingnextgenerationsequencers(suchastheFLXpyrosequencers)allowsustoobtainahugenumberofcommunitysequencetags(forexamplec.10000–10000016Spyrotagsforeachsample),whichismorethananySanger-basedcloningstudytodate,andhavebeenusedforcharacterizingarchaealpopulations(includingmethanogens)inhydrothermalchimneys(Bra-zeltonetal.,2010a,b).Themethodologicaladvancementsof16SrRNAgenepyrosequencingincludehigherresolu-tion(moresequences)forgene-basedcommunitystruc-tureanalysis,analysisofmultiplerelatedsamplesanduseofmetadata(TringeandHugenholtz,2008).Becauseoftheseadvancements,aswellasrecentdevelopmentofanalyticaltoolsformassivesequencedatasuchasQIIME(Caporasoetal.,2010),themethodmaybefurtherusedforcharacterizingdiversityofmethanogensinecosystems.Similarly,theprimersformethylcoenzymeMreductasegeneshaveoftenbeenusedforPCRdetectionandiden-tificationtoexclusivelyexplorethediversityofmethano-gensinsamples.Forexample,theMCRsetwasusedtoelucidatethediversityofmethanogensinvariousenviron-mentswithPCR-basedcloning(Kemnitzetal.,2004;Dhillonetal.,2005;Alainetal.,2006)andT-RFLPanaly-ses(Ramakrishnanetal.,2001;Kemnitzetal.,2004).SuchcloninganalyseswerealsoconductedusingtheME(Halesetal.,1996;Nercessianetal.,1999;Galandetal.,2002;2005;Tatsuokaetal.,2004)andMLprimersets(Lutonetal.,2002;Castroetal.,2004;Juottonenetal.,2005;Nercessianetal.,2005;Ufnaretal.,2007;Smithetal.,2008).ComparativestudiesusingthesethreeprimersetshaveindicatedthattheMLprimersetismoreefficientforretrievingphylogeneticallydiversemethanogensinthewetlandthanothers(Juottonenetal.,2006;Jermanetal.,2009).Owingtothisadvantage,theMLsethasbeenusedextensivelytodeterminethediversityofmethanogensinvariousanaerobicecosystems.Inaddition,ithasbeennotedthatthesemcrA-targetedprimersets(especially
ME-relatedprimerset)werealsousedforthequantitativedetectionofanaerobicmethanotrophicarchaea(ANME)inmethaneseepsediments(Inagakietal.,2004;Nunouraetal.,2006;2008).ThisisduetothefactthatanaerobicmethaneoxidationrepresentedbytheANMEgroupisconsideredtoproceedwithmcr-typeenzymes(ThauerandShima,2008).DetailedinformationaboutthemcrA-basedqPCRforANMEsisdescribedbelow.
Polymerasechainreaction-basedmoleculartech-niques,suchasPCR-cloning,pyrosequencing,DGGEandT-RFLPareadequatetogainentirecommunitycom-positionanddiversityofmethanogensinecosystems.Basedonthefrequencyofretrievalofphylotypesingenelibrary(orrelativeintensityofDGGEorT-RFbandsinelectropherogram),relativeabundanceofphylotypesofinterestcanbeinferred.However,itshouldbenotedthatentiremicrobialcommunitystructureanalysisbasedonbulkcelllysis,DNAextraction,PCRandcloningareoftensuspectbecauseofseveralbiasesinvolvedineachofthesteps(Dahllof,2002).Therefore,oneshouldbecarefultodiscussontheabundanceofphylotypesinsamplesbasedsolelyonthedataobtainedbythesemethods.Morereliablemethodstocarryoutquantitativedetectionofdifferentgroupsofmethanogensinsampleswouldbetousethefollowingquantitativemoleculartechniques.Identificationandquantificationofmethanogensincomplexcommunitiesbymembranehybridizationmethod
QuantitativemembranehybridizationoflabelledDNAprobestocommunityrRNAshasbeenappliedtovariousenvironmentalrRNAsforthequantitativedetectionofspe-cificgroupsofmicrobespresentincomplexcommunities(Stahletal.,1988;Raskinetal.,1994a).RNA-dependentcommunityanalysisisknowntoindicatetheinsituactivityofindividualmembersinecosystems,becauseofthereasonsthatRNAsynthesisisknowntoreflecttheinsitugrowthratesoforganisms(Poulsenetal.,1993;Amannetal.,1995),andthattheturnoverofRNAisthoughttobemuchhigherthanthatofDNA.Therefore,rRNA-dependentmoleculartechniqueslikethepresentoneprovidepreciseinformationaboutthedynamicnatureofindividualmicrobesinsystems.In1994,Raskinandcolleaguescarriedoutthefirstleadingstudiesonthedevelopmentofeightoligonucleotideprobesforthequantitativedetectionofmethanogensinanaerobicwastewatertreatmentsludges(StahlandAmann,1991;Raskinetal.,1994a,b).Inthesestudies,theyestablishedthegroup-specificoligo-nucleotideprobestargetingMethanomicrobiales(probesMG1200andMSMX860),Methanobacteriaceae(probesMB310andMB1174)andMethanococcales(probeMC1109).Becauseoftheimportanceofmethaneproduc-tionfromacetateinanaerobicbioreactors,specificprobes
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
10T.NarihiroandY.Sekiguchi
foraceticlasticmethanogens,suchasthemembersofMethanosarcinaceae(probesMS1414andMS821)andMethanosaeta(probeMX825),werealsodeveloped.
Theseprobeshavebeensuccessfullyappliedtothequantificationofmethanogensinlaboratory-andfull-scaleanaerobicbioreactorsbasedonrRNA(Raskinetal.,1995;Griffinetal.,1998;Liuetal.,2002;McMahonetal.,2004;Zhengetal.,2006).Althoughmembranehybridiza-tionenablesthesensitivequantificationofindividualspeciesofrRNAmolecules,thismethodrequiresseverallaboriousexperimentalsteps,oftenradioactivelylabelledDNAprobes,andreferencerRNAsamplesasexternalstandardsforeachexperiment.Thus,themethoditselfmaybereplacedbysimilarbutmuchrapidandsimplermethods,suchasreal-timeRT-PCRandRNaseHmethods.However,theprobesusedformembranehybridizationexperimentsmaybealsousedasprobes/primersinotherexperimentsshownbelow.FISHformethanogens
Whole-cellFISHbasedon16SrRNAisnowcommonlyusedtodetectspecificgroupsofmicrobesandtoquantifypopulationsofinterestinenvironmentsbydirectcountingunderamicroscope(Amannetal.,1995).Inaddition,FISHisusedforvisualizingthespatialdistributionofthepopu-lationofinterestinbiofilms,suchasthoseofmethanogensinsludgegranulesinmethanogenicwastewatertreatmentsystems(Sekiguchietal.,1999).Basically,theprobesdevelopedformembranehybridizationofmethanogen16SrRNAsorreverseprimersforPCRamplificationofmethanogen16SrRNAgenescandirectlybeusedasoligonucleotideprobesforinsituhybridizationstudies,theprobespreviouslydesignedbyRaskinandcolleagues(Raskin,etal.,1994b)havefrequentlybeusedforthepurposeofFISHstudiesaswell.TheseprobeshavebeenusedforthequantitativedetectionofmethanogensusingtheFISHtechniqueinvariousanaerobicecosystems,suchaspeatbog(e.g.Hornetal.,2003),aquifer(e.g.Kleikemperetal.,2005),landfills(e.g.Laloui-Carpentieretal.,2006)andanaerobicwastewatertreatmentpro-cesses(e.g.Sekiguchietal.,1999;Plumbetal.,2001;Boonapatcharoenetal.,2007;Chenetal.,2009).Recently,theimprovementofthespecificityandsensitivityoftheprobesdesignedbyRaskinandcolleagues(1994b)hasbeenreported.Crocettiandcolleagues(2006)refinedtheexperimentalconditionsofsuchprobesforFISHanaly-sistoaccuratelyandsensitivelydetectmethanogens.Inadditiontothequantification,theprobes(Table1)havealsobeenusedforinvestigatingthelocalizationofmethanogensinbiofilms(sludgegranules)[e.g.(Roch-eleauetal.,1999;Sekiguchietal.,1999;Plumbetal.,2001;Zhengetal.,2006;Vavilinetal.,2008;Chenetal.,2009)].Inanaerobicsludgegranules,hydrogenotrophic
methanogensareoftenjuxtaposedwithsyntrophicsubstrate-degradingbacteria,suchassyntrophicpropionate-oxidizingbacteriasuchasmembersofthegeneraSyntrophobacterandPelotomaculum;suchcloseproximitybetweensyntrophicbacteriaandmethanogenshasbeenobservedbyFISHwithconfocallaserscanningmicroscopy(Harmsenetal.,1995;1996;Sekiguchietal.,1999;Imachietal.,2000).Anaerobicciliatesoftenpossesendosymbioticmethanogenswithintheircells,andthedistributionofsuchmethanogensineukaryoticcellshasbeenobservedbytheFISHmethod[e.g.(Embleyetal.,1992;Shinzatoetal.,2007)].
AlthoughFISHisapowerfulmethodforvisualizingthecellsofinterest,therearesomedrawbacksindetectingcells;oneofsuchproblemsisconcernedwiththepenetra-tionofoligonucleotideprobesintothecells(Amannetal.,1995).Formethanogens,FISHstainingisoftendifficultforsomeMethanobacteriumandMethanobrevibactercells,forwhicholigonucleotideprobesdonotpenetrateintotheircells(Sekiguchietal.,1999;Yanagitaetal.,2000;Naka-muraetal.,2006).Tosolvethisproblem,fixedcellsweresubjectedtofreeze-thawcyclesbeforehybridization,resultingintheimprovementofprobepenetration(Sekigu-chietal.,1999).Anotherwaytosolvethisproblemistheuseofrecombinantpseudomureinendoisopeptidase,whichincreasesthepermeabilityofoligonucleotideprobesintocells,andallowsabettervisualizationofmethanogensinanaerobicgranularsludgeandtheendosymbioticmethanogensintheanaerobicciliateTrimyemacompres-sum(Nakamuraetal.,2006).Animprovedprotocolofcatalysedreporterdeposition-FISHformethanogenswithrecombinantpseudomureinendoisopeptidasehasalsobeenreported,whichcanincreasefluorescencesignalintensityinFISHfordetectingcellswithalowrRNAcontent(Kubotaetal.,2008).
Recently,mcrA-basedinsitudetectionofmethanogenshasbeenperformedusingthetwo-passtyramidesignalamplification-FISHapproachcombinedwithlockednucleicacids(Kubotaetal.,2006;Kawakamietal.,2010).Theseattemptswere,atthispoint,onlypartiallysuccessfulindetectingmethanogencells,becausemcrAisgenerallypresentasasinglecopygeneontheirchro-mosome,whichresultsinalowsensitivityofdetection.qPCR
QuantitativePCRof16SrRNAgeneandmcrAhasalsobeenusedtoquantifytheabundanceofmethanogensinrecentyears.ExamplesofqPCRprimerandprobesetsfordifferenttaxaofmethanogensarelistedinTable3.Forexample,theprimersMet630F/Met803RweredevelopedfortheSYBRgreen-basedreal-timeqPCRforalmostalltheknownmethanogensintherumenofthedairycow(Hooketal.,2009).Yuandcolleagues(2005)designed
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens11
TaqMan-basedqPCRprobes/primersets(sixsetsintotal)foreachoftheordersMethanomicrobiales,Methanosarci-nales,MethanobacterialesandMethanococcales,aswellasthefamiliesMethanosaetaceaeandMethanosarci-naceae.Theyappliedapartofthesesetstoquantifyingaceticlasticmethanogensinmethanogenicsludgesfortreatingsewagesludges,cheesewheywastewaterandsyntheticwastewater,andrevealedthatthepopulationofaceticlasticmethanogensisaffectedbytheacetatecon-centrationinthewastewaters(Yuetal.,2006).qPCRdetectionusingspecificprimersforparticulargroupsofmethanogensofinterest,suchasMethanoculleus(Shige-matsuetal.,2003;Horietal.,2006;Franke-Whittleetal.,2009a),Methanolinea(Imachietal.,2008),Methanospir-illum(Tangetal.,2005),Methanosaeta(Shigematsuetal.,2003;Sawayamaetal.,2004;Horietal.,2006),Metha-nosarcina(Shigematsuetal.,2003;Sawayamaetal.,2006;Franke-Whittleetal.,2009a),Methanolobus(Zhangetal.,2008a,b),Methanobrevibacter(Armougometal.,2009),Methanobacterium(Sawayamaetal.,2006)andMethanothermobacter(Horietal.,2006;Sawayamaetal.,2006;Franke-Whittleetal.,2009a)havealsobeenreportedtodate(Table3).
FortheqPCRdetectionofmcrA,theMEprimersetwasusedforthequantificationofmethanogenicandmethan-otrophicpopulationsinmethaneseepsediments(Inagakietal.,2004;Nunouraetal.,2006).Afterwards,Nunouraandcolleagues(2008)slightlymodifiedtheMEprimerseries,andshowedthatthemixtureoftheME3MFandME3MF-eforwardprimersandtheME2’reverseprimerismostsuitablefortheqPCRdetectionofthemethanogensandANMEsintheenvironments.TheresultsshowedthatasignificantamountofmethanogensandANMEswasfoundinanaerobicallydigestedsludgeandmethaneseepsediments.TheMLprimersetwasalsousedforthequantitationofmethanogenicarchaealpopulationsintherumen(Denmanetal.,2007)andhumansubgingivalplaque(Viannaetal.,2008).Moreover,SteinbergandRegan(2008;2009)developedthemlas/mcrA-revprimerset,whichisaderivativeoftheMLprimerset,fortheclonelibraryconstructionandqPCRanalysesofmetha-nogensinoligotrophicfenandanaerobicdigestersludge.Inaddition,thegenus-specificTaqManprobesforthemcrA-basedquantitativedetectionoftheMethanosaeta,MethanosarcinaandMethanoculleusresidentinacetate-fedchemostats,andtheresultsshowedthatdilutionrateisakeyfactorintheacetatebioconversionpathway(Shigematsuetal.,2004).
QuantitativePCRmethodprovidessensitive,quantita-tivedataofgeneofinterestwithasufficientlyhighdynamicrangeofquantification(ZhangandFang,2006).Therefore,inadditiontotheuseofdigitalPCR(Ottesenetal.,2006),qPCRmaybefurtherusedforquantitativemonitoringofmethanogentaxaofinterestsincomplex
microbialcommunities.However,itshouldbenotedthatthemethodisPCR-basedandhencetheirdatacanbesuspectbecauseofbiasesinvolvedinDNAextractionandprimer/probemismatches.
AssessingmethanogenpopulationbyRNaseHmethod
Althoughtheabove-mentionedquantitativemethodssuchasmembranehybridizationandqPCRarebecominggeneralmeanstodeterminetheabundanceofthepopu-lationofinterestinacomplexmicrobialcommunity,thereisaneedtodevelopmoresimpleandrapidtechniquesthatmeettheneedsforreal-timemonitoringofthepopulationofinterestinacomplexcommunity.Recently,asimpleandrapidquantificationmethod,namely,theRNaseHmethod,hasbeendeveloped(Uyenoetal.,2004).Thismethodisbasedonthesequence-specificcleavageof16SrRNAwithribonucleaseH(RNaseH)andoligonucleotide(scissor)probes.RNAsfromacomplexcommunitywerefirstmixedwithanoligonucleotideandsubsequentlydigestedwithRNaseH.BecauseRNaseHspecificallydegradestheRNAstrandofRNA:DNAhybridheterodu-plexes,thetargetedrRNAsarecleavedatthehybridizationsiteinasequence-dependentmannerandareconse-quentlycutintotwofragments.Incontrast,non-targetedrRNAsremainintactunderthesameconditions.ForthedetectionofcleavedrRNAs,theresultingRNAfragmentpatternscanberesolvedbygelelectrophoresisusingRNA-stainingdyes.Therelativeabundanceofthetargetedspeciesof16SrRNAfragmentsintotal16SrRNAcanalsobequantifiedbydeterminingthesignalintensityofindi-vidual16SrRNAbandsinanelectropherogram(withouttheuseofexternalstandards).BecausethismethoddoesnotrequireanexternalRNAstandardforeachexperiment,asisrequiredinmembranehybridization,andbecausethepresentmethodisrelativelyeasytoperformwithinashorttime(i.e.within2–3h),thistechniquemayprovidedirect,rapidandeasymeansofthequantitativedetectionofparticulargroupsofanaerobesbasedontheirrRNA,suchasthoseofmethanogensaswell.
Thismethodhasbeensuccessfullyappliedtothequan-tificationofactivemethanogensinanaerobicbiologicaltreatmentprocesses(Uyenoetal.,2004;Sekiguchietal.,2005;Narihiroetal.,2009b).Ingeneral,oligonucleotideprobesusedinFISHandmembranehybridizationmethodscandirectlybeusedasscissorprobesintheRNaseHmethod.Recently,atotalof40probes,includingnewlydesignedandpreviouslyreportedprobeslistedinTable1,havebeenoptimizedforthespecificquantifica-tionofmethanogensatdifferenttaxonomiclevelsforuseintheRNaseHmethodandhavebeenappliedtoquan-titativeandcomprehensivedetectionofmethanogensinvarioustypesofanaerobicbiosystems(Narihiroetal.,
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
12T.NarihiroandY.Sekiguchi
2009b).Asaresult,methanogenpopulationswereiden-tifiedatdifferenttaxonomiclevelsandwereinfluencedbytheprocesstemperatureandwastewatercompositions.BecauseofthereasonsthatthismethodisbasedonrRNAandthattheRNA(rRNA)levelisoftendependentontheinsituactivityofindividualcellsasdescribedabove,thismethodmaybeusedforreal-timemonitoringofactivemethanogensandotherimportantbacteriainengineeredecosystemssuchaswaste/wastewatertreat-mentsystemstobettercontrolsuchbioreactors.Stableisotopeprobing(SIP)-baseddetectionofactivemethanogenpopulationsinenvironmentsToidentifymetabolicallyactivepopulationsinenviron-ments,SIPofDNA(Radajewskietal.,2000)andRNA(Manefieldetal.,2002)hasbeenusedinrecentyears.Inprinciple,SIPtechnologyisbasedontheincorporationof13
C-labelledsubstratesintothenucleicacids.Thesepara-tionofisotopicallylabelled(active)fractionsfromunla-beled(inactive)fractionsisgenerallyperformedwithdensitygradientcentrifugation.Thesubstrate-assimilatedmicroorganismsinthelabelledfractionsareidentifiedbyasetofPCR-basedmoleculartechniquessuchasgenecloning,DGGEandothermethods.Therefore,forthepurposeofidentifyingactivemethanogensthatarerespon-sibleforparticularmetabolismsinenvironments,theprobes/primerslistedinTables1and2canbeused.
Asexamples,activemethanogenpopulationsinvolvedinthesyntrophicpropionateoxidationinanoxicsoilwereanalysedonthebasisofrRNA-SIP,anditwasfoundthatthemembersofthegeneraMethanobacterium,Metha-nosarcinaandMethanocellaplayakeyroleinscavenginghydrogen/formate/acetateinsyntrophicassociationwithpropionate-oxidizingbacteria(Luedersetal.,2004).ConradandcoworkershavestudiedthedetectionofactivemethanogenpopulationsusingDNA-SIPcombinedwith13C-labelledCO2,andtheresultsofT-RFLPprofilingandphylogeneticanalysisforclonal16SrRNAgenefrag-mentssuggestthatmembersoftheRC-Igroup(Metha-nocellales)serveasimportantmethanogensinricepaddyfields(LuandConrad,2005;Luetal.,2005).Theactivemethanogenicpopulationsinenrichmentcultureofmunicipalsolidwastedigesterresiduesspikedwith13C-labelledsubstrates(suchascellulose,glucoseandsodiumacetate)weredeterminedbyDNA-SIPfollowedbycloninganalysis(Lietal.,2009).Othermethodsandfutureperspectives
DNAmicroarrayplatform,likePhyloChip,isbecominganimportanttoolforparalleldetectionofdifferentcommunitymembersofmicrobesinecosystems.Forhighthrough-putandcomprehensivedetectionofmethanogensinparallel,ANAEROCHIP(Franke-Whittleetal.,2009b)and
GeoChip(Wangetal.,2009)havebeendevelopedrecently.Theprimers/probessummarizedinthisreviewmaybeintegratedintosuchaplatformforparallelandhierarchicaldetectionofmethanogens.Theseprimer/probesformethanogenscanalsobeusedinnovelPCR-basedtechniques,suchasthehierarchicaloligonucleotideprimerextensionmethod(WuandLiu,2007),whichhasrecentlybeendevelopedforquantitative,multiplexdetec-tionoftargetedmicrobialgenesamongPCR-amplifiedgenes.SIPtechnologyhasbeennotedasanimportantpretreatmentstepforfunctionalmicrobialcommunityanalyses,suchasRamanmicroscopy-FISH(Huangetal.,2007;2009)andmetagenomicapproaches(Kalyuzhnayaetal.,2008;Suletal.,2009).Moreover,recentadvancesinanalyticalchemistry,suchasisotoperatiomassspectrom-etry(Penningetal.,2006;Vavilinetal.,2008)andsecond-aryionmassspectrometry(Orphanetal.,2001),holdgreatpromiseforthehighlysensitivedeterminationoftargetedmicrobes.Thus,inadditiontodescribingthediversityofmethanogensinparticularenvironmentsofinterestonthebasisofDNAandRNA,suchfunction-relatedanalysesofmethanogensmaybecomeimportantinthefieldsofenvironmental,determinativeandappliedmicrobiology.
Asdescribedinthisminireview,avastnumberofprobe/primershavebeendevelopedfordescribingandquanti-fyingmethanogenpopulations,coveringmostpartsoftheknownculturablemethanogensdescribedsofar.Avarietyofmolecularmethodshavealsobeendevelopedthatareusedincombinationwiththeprobe/primers.Becausethesemolecularmethodshavetheirownadvancementsanddrawbacks,researchersneedtoselectappropriatecombinationsofmethodsandprobe/primersdependingonwhattheresearchersneedtoknow.Fordetails,recentreviewsmaybehelpfulfortheselectionofmoleculartechniquestobeused(Talbotetal.,2008;Tabatabaeietal.,2010).Inmolecularecology,multipleapproachesarebesttogainacompletepictureofmethanogenpopu-lationsinenvironments.Therefore,theuseofappropriate(multiple)moleculartechniquesincombinationswithothernon-molecularbasedmethodslikemembranelipid,autof-luorescence,activitymeasurementandimmunoenzy-maticprofilingshouldbeconsidered.Itshouldalsobenotedthattherearestillanumberofuncultivatedmetha-nogensinvariousenvironments,andthattheyshouldbefurtherisolatedandcharacterizedindetail.Monitoringtoolsforsuchunculturedmethanogensremaintobedevelopedtofurtherincreaseinthecoverageofmetha-nogenspresentinenvironments.Acknowledgements
ThisworkwassupportedbytheEnvironmentResearchandTechnologyDevelopmentFund(S2-03)andtheGlobal
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens13
EnvironmentResearchFund(RF-076)oftheMinistryoftheEnvironment,Japan.
Caporaso,J.G.,Kuczynski,J.,Stombaugh,J.,Bittinger,K.,Bushman,F.D.,Costello,E.K.,etal.(2010)QIIMEallowsanalysisofhigh-throughputcommunitysequencingdata.NatMethods7:335–336.
Casamayor,E.O.,Muyzer,G.,andPedros-Alio,C.(2001)Compositionandtemporaldynamicsofplanktonicarchaealassemblagesfromanaerobicsulfurousenviron-mentsstudiedby16SrDNAdenaturinggradientgelelectrophoresisandsequencing.AquatMicrobEcol25:237–246.
Casamayor,E.O.,Massana,R.,Benlloch,S.,Ovreas,L.,Diez,B.,Goddard,V.J.,etal.(2002)Changesinarchaeal,bacterialandeukaryalassemblagesalongasalinitygradi-entbycomparisonofgeneticfingerprintingmethodsinamultipondsolarsaltern.EnvironMicrobiol4:338–348.Castro,H.,Ogram,A.,andReddy,K.R.(2004)Phylogene-ticcharacterizationofmethanogenicassemblagesineutrophicandoligotrophicareasoftheFloridaEverglades.ApplEnvironMicrobiol70:6559–6568.
Chen,C.L.,Wu,J.H.,Tseng,I.C.,Liang,T.M.,andLiu,W.T.(2009)Characterizationofactivemicrobesinafull-scaleanaerobicfluidizedbedreactortreatingphenolicwastewa-ter.MicrobesEnviron24:144–153.
Chouari,R.,LePaslier,D.,Daegelen,P.,Ginestet,P.,Weis-senbach,J.,andSghir,A.(2005)Novelpredominantarchaealandbacterialgroupsrevealedbymolecularanalysisofananaerobicsludgedigester.EnvironMicrobiol7:1104–1115.
Colwell,F.S.,Boyd,S.,Delwiche,M.E.,Reed,D.W.,Phelps,T.J.,andNewby,D.T.(2008)EstimatesofbiogenicmethaneproductionratesindeepmarinesedimentsatHydrateRidge,Cascadiamargin.ApplEnvironMicrobiol74:3444–3452.
Conrad,R.,Erkel,C.,andLiesack,W.(2006)RiceClusterImethanogens,animportantgroupofArchaeaproducinggreenhousegasinsoil.CurrOpinBiotechnol17:262–267.Crocetti,G.,Murto,M.,andBjornsson,L.(2006)AnupdateandoptimisationofoligonucleotideprobestargetingmethanogenicArchaeaforuseinfluorescenceinsituhybridisation(FISH).JMicrobiolMethods65:194–201.Dahllof,I.(2002)Molecularcommunityanalysisofmicrobialdiversity.CurrOpinBiotechnol13:213–217.
Denman,S.E.,Tomkins,N.,andMcSweeney,C.S.(2007)Quantitationanddiversityanalysisofruminalmethano-genicpopulationsinresponsetotheantimethanogeniccompoundbromochloromethane.FEMSMicrobiolEcol62:313–322.
Dhillon,A.,Lever,M.,Lloyd,K.G.,Albert,D.B.,Sogin,M.L.,andTeske,A.(2005)MethanogendiversityevidencedbymolecularcharacterizationofmethylcoenzymeMreduc-taseA(mcrA)genesinhydrothermalsedimentsoftheGuaymasBasin.ApplEnvironMicrobiol71:4592–4601.Doerfert,S.N.,Reichlen,M.,Iyer,P.,Wang,M.Y.,andFerry,J.G.(2009)Methanolobuszinderispnov.,amethylotrophicmethanogenisolatedfromadeepsubsurfacecoalseam.IntJSystEvolMicrobiol59:10–1069.
Dojka,M.A.,Hugenholtz,P.,Haack,S.K.,andPace,N.R.(1998)Microbialdiversityinahydrocarbon-andchlorinated-solvent-contaminatedaquiferundergoingintrinsicbioremediation.ApplEnvironMicrobiol:3869–3877.
References
Alain,K.,Holler,T.,Musat,F.,Elvert,M.,Treude,T.,andKruger,M.(2006)Microbiologicalinvestigationofmethane-andhydrocarbon-dischargingmudvolcanoesintheCarpathianMountains,Romania.EnvironMicrobiol8:574–590.
Amann,R.I.,Ludwig,W.,andSchleifer,K.H.(1995)Phylo-geneticidentificationandin-situdetectionofindividualmicrobial-cellswithoutcultivation.MicrobiolRev59:143–169.
Ariesyady,H.D.,Ito,T.,andOkabe,S.(2007)Functionalbacterialandarchaealcommunitystructuresofmajortrophicgroupsinafull-scaleanaerobicsludgedigester.WaterRes41:15–1568.
Armougom,F.,Henry,M.,Vialettes,B.,Raccah,D.,andRaoult,D.(2009)MonitoringbacterialcommunityofhumangutmicrobiotarevealsanincreaseinLactobacillusinobesepatientsandmethanogensinanorexicpatients.PLoSONE4:e7125.doi:7110.1371/journal.pone.0007125.
Banning,N.,Brock,F.,Fry,J.C.,Parkes,R.J.,Hornibrook,E.R.C.,andWeightman,A.J.(2005)Investigationofthemethanogenpopulationstructureandactivityinabrackishlakesediment.EnvironMicrobiol7:947–960.
Barns,S.M.,Fundyga,R.E.,Jeffries,M.W.,andPace,N.R.(1994)RemarkablearchaealdiversitydetectedinaYellow-stoneNationalParkhot-springenvironment.ProcNatlAcadSciUSA91:1609–1613.
Boetius,A.,Ravenschlag,K.,Schubert,C.J.,Rickert,D.,Widdel,F.,Gieseke,A.,etal.(2000)Amarinemicrobialconsortiumapparentlymediatinganaerobicoxidationofmethane.Nature407:623–626.
Boonapatcharoen,N.,Meepian,K.,Chaiprasert,P.,andTechkarnjanaruk,S.(2007)Molecularmonitoringofmicro-bialpopulationdynamicsduringoperationalperiodsofanaerobichybridreactortreatingcassavastarchwastewa-ter.MicrobEcol:21–30.
Bräuer,S.L.,Cadillo-Quiroz,H.,Yashiro,E.,Yavitt,J.B.,andZinder,S.H.(2006)Isolationofanovelacidiphilicmetha-nogenfromanacidicpeatbog.Nature442:192–194.Bräuer,S.L.,Cadillo-Quiroz,H.,Ward,R.J.,Yavitt,J.,andZinder,S.(2010)Methanoregulabooneigen.nov.,sp.nov.,anacidiphilicmethanogenisolatedfromanacidicpeatbog.IntJSystEvolMicrobiol(inpress):doi:10.1099/ijs.1090.021782-021780.
Brazelton,W.J.,Ludwig,K.A.,Sogin,M.L.,Andreishcheva,E.N.,Kelley,D.S.,Shen,C.C.,etal.(2010a)Archaeaandbacteriawithsurprisingmicrodiversityshowshiftsindomi-nanceover1,000-yeartimescalesinhydrothermalchim-neys.ProcNatlAcadSciUSA107:1612–1617.
Brazelton,W.J.,Sogin,M.L.,andBaross,J.A.(2010b)Mul-tiplescalesofdiversificationwithinnaturalpopulationsofarchaeainhydrothermalchimneybiofilms.EnvironMicro-biolRep2:236–242.
Cadillo-Quiroz,H.,Yavitt,J.B.,andZinder,S.H.(2009)Methanosphaerulapalustrisgen.nov.,spnov.,ahydro-genotrophicmethanogenisolatedfromaminerotrophicfenpeatland.IntJSystEvolMicrobiol59:928–935.
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
14T.NarihiroandY.Sekiguchi
Embley,T.M.,Finlay,B.J.,Thomas,R.H.,andDyal,P.L.(1992)TheuseofrRNAsequencesandfluorescentprobestoinvestigatethephylogeneticpositionsoftheanaerobicciliateMetopuspalaeformisanditsarchaeobacterialendo-symbiont.JGenMicrobiol138:1479–1487.
Falz,K.Z.,Holliger,C.,Grosskopf,R.,Liesack,W.,Nozhevni-kova,A.N.,Muller,B.,etal.(1999)VerticaldistributionofmethanogensintheanoxicsedimentofRotsee(Switzer-land).ApplEnvironMicrobiol65:2402–2408.
Franke-Whittle,I.H.,Goberna,M.,andInsam,H.(2009a)Designandtestingofreal-timePCRprimersforthequan-tificationofMethanoculleus,Methanosarcina,Methano-thermobacter,andagroupofunculturedmethanogens.CanJMicrobiol55:611–616.
Franke-Whittle,I.H.,Goberna,M.,Pfister,V.,andInsam,H.(2009b)DesignanddevelopmentoftheANAEROCHIPmicroarrayforinvestigationofmethanogeniccommunities.JMicrobiolMethods79:279–288.
Frey,J.C.,Pell,A.N.,Berthiaume,R.,Lapierre,H.,Lee,S.,Ha,J.K.,etal.(2009)Comparativestudiesofmicrobialpopulationsintherumen,duodenum,ileumandfaecesoflactatingdairycows.JApplMicrobiol108:1982–1993.Friedrich,M.W.(2005)Methyl-coenzymeMreductasegenes:uniquefunctionalmarkersformethanogenicandanaerobicmethane-oxidizingArchaea.MethodsEnzymol397:428–442.
Galand,P.E.,Saarnio,S.,Fritze,H.,andYrjala,K.(2002)DepthrelateddiversityofmethanogenArchaeainFinnisholigotrophicfen.FEMSMicrobiolEcol42:441–449.
Galand,P.E.,Juottonen,H.,Fritze,H.,andYrjala,K.(2005)Methanogencommunitiesinadrainedbog:effectofashfertilization.MicrobialEcol49:209–217.
Garrity,G.M.,andHolt,J.G.(2001)PhylumAII.Euryarcha-eotaphy.nov.InBerrgey’sManual,2ndedn.Boone,D.R.,Castenholz,R.W.,andGarrity,G.M.(eds).NewYork,NY,USA:Springer-Verlag,pp.211–355.
Garrity,G.M.,Lilburn,T.G.,Cole,J.R.,Harrison,S.H.,Euzeby,J.,andTindall,B.J.(2007)Part1–The‘Archaea’,Phyla‘Crenarchaeota’and‘Euryarchaeota’[WWWdocu-ment].URLhttp://www.taxonomicoutline.org/index.php/toba/article/view/178/210.
Griffin,M.E.,McMahon,K.D.,Mackie,R.I.,andRaskin,L.(1998)Methanogenicpopulationdynamicsduringstart-upofanaerobicdigesterstreatingmunicipalsolidwasteandbiosolids.BiotechnolBioeng57:342–355.
Grosskopf,R.,Janssen,P.H.,andLiesack,W.(1998)Diver-sityandstructureofthemethanogeniccommunityinanoxicricepaddysoilmicrocosmsasexaminedbycultiva-tionanddirect16SrRNAgenesequenceretrieval.ApplEnvironMicrobiol:960–969.
Hales,B.A.,Edwards,C.,Ritchie,D.A.,Hall,G.,Pickup,R.W.,andSaunders,J.R.(1996)Isolationandidentifica-tionofmethanogen-specificDNAfromblanketbogfeatbyPCRamplificationandsequenceanalysis.ApplEnvironMicrobiol62:668–675.
Harmsen,H.J.M.,Kengen,K.M.P.,Akkermans,A.D.L.,andStams,A.J.M.(1995)Phylogeneticanalysisoftwosyntrophicpropionate-oxidizingbacteriainenrichmentscultures.SystApplMicrobiol18:67–73.
Harmsen,H.J.M.,Kengen,H.M.P.,Akkermans,A.D.L.,Stams,A.J.M.,anddeVos,W.M.(1996)Detectionand
localizationofsyntrophicpropionate-oxidizingbacteriaingranularsludgebyinsituhybridizationusing16SrRNA-basedoligonucleotideprobes.ApplEnvironMicrobiol62:1656–1663.
Hook,S.E.,Northwood,K.S.,Wright,A.D.G.,andMcBride,B.W.(2009)Long-termmonensinsupplementationdoesnotsignificantlyaffectthequantityordiversityofmethano-gensintherumenofthelactatingdairycow.ApplEnvironMicrobiol75:374–380.
Hori,T.,Haruta,S.,Ueno,Y.,Ishii,M.,andIgarashi,Y.(2006)Dynamictransitionofamethanogenicpopulationinresponsetotheconcentrationofvolatilefattyacidsinathermophilicanaerobicdigester.ApplEnvironMicrobiol72:1623–1630.
Horn,M.A.,Matthies,C.,Kusel,K.,Schramm,A.,andDrake,H.L.(2003)Hydrogenotrophicmethanogenesisbymoder-atelyacid-tolerantmethanogensofamethane-emittingacidicpeat.ApplEnvironMicrobiol69:74–83.
Huang,W.E.,Stoecker,K.,Griffiths,R.,Newbold,L.,Daims,H.,Whiteley,A.S.,andWagner,M.(2007)Raman-FISH:combiningstable-isotoperamanspectroscopyandfluorescenceinsituhybridizationforthesinglecellanaly-sisofidentityandfunction.EnvironMicrobiol9:1878–18.
Huang,W.E.,Ferguson,A.,Singer,A.C.,Lawson,K.,Thompson,I.P.,Kalin,R.M.,etal.(2009)Resolvinggeneticfunctionswithinmicrobialpopulations:insituanalysesusingrRNAandmRNAstableisotopeprobingcoupledwithsingle-cellraman-fluorescenceinsituhybridization.ApplEnvironMicrobiol75:234–241.
Hugenholtz,P.(2002)Exploringprokaryoticdiversityinthegenomicera.GenomeBiol3:REVIEWS0003.
Iino,T.,Mori,K.,andSuzuki,K.(2010)Methanospirillumlacunaesp.nov.,amethane-producingarchaeonisolatedfromapuddlysoil,andtheemendationofthegenusMethanospirillumandMethanospirillumhungatei.IntJSystEvolMicrobiol60:2563–2566.
Imachi,H.,Sekiguchi,Y.,Kamagata,Y.,Ohashi,A.,andHarada,H.(2000)Cultivationandinsitudetectionofathermophilicbacteriumcapableofoxidizingpropionateinsyntrophicassociationwithhydrogenotrophicmethano-gensinathermophilicmethanogenicgranularsludge.ApplEnvironMicrobiol66:3608–3615.
Imachi,H.,Sakai,S.,Sekiguchi,Y.,Hanada,S.,Kamagata,Y.,Ohashi,A.,andHarada,H.(2008)Methanolineatardagen.nov.,spnov.,amethane-producingarchaeonisolatedfromamethanogenicdigestersludge.IntJSystEvolMicrobiol58:294–301.
Imachi,H.,Sakai,S.,Nagai,H.,Yamaguchi,T.,andTakai,K.(2009)Methanofollisethanolicusspnov.,anethanol-utilizingmethanogenisolatedfromalotusfield.IntJSystEvolMicrobiol59:800–805.
Inagaki,F.,Tsunogai,U.,Suzuki,M.,Kosaka,A.,Machiyama,H.,Takai,K.,etal.(2004)CharacterizationofC-1-metabolizingprokaryoticcommunitiesinmethaneseephabitatsattheKuroshimaKnoll,southernRyukyuarc,byanalyzingpmoA,mmoX,mxaF,mcrA,and16SrRNAgenes.ApplEnvironMicrobiol70:7445–7455.
Jerman,V.,Metje,M.,Mandic-Mulec,I.,andFrenzel,P.(2009)Wetlandrestorationandmethanogenesis:theactivityofmicrobialpopulationsandcompetitionfor
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens15
substratesatdifferenttemperatures.Biogeosciences6:1127–1138.
Juottonen,H.,Galand,P.E.,Tuittila,E.S.,Laine,J.,Fritze,H.,andYrjala,K.(2005)MethanogencommunitiesandBac-teriaalonganecohydrologicalgradientinanorthernraisedbogcomplex.EnvironMicrobiol7:17–1557.
Juottonen,H.,Galand,P.E.,andYrjala,K.(2006)DetectionofmethanogenicArchaeainpeat:comparisonofPCRprimerstargetingthemcrAgene.ResMicrobiol157:914–921.Kalyuzhnaya,M.G.,Lapidus,A.,Ivanova,N.,Copeland,A.C.,McHardy,A.C.,Szeto,E.,etal.(2008)High-resolutionmetagenomicstargetsspecificfunctionaltypesincomplexmicrobialcommunities.NatBiotechnol26:1029–1034.
Kawakami,S.,Kubota,K.,Imachi,H.,Yamaguchi,T.,Harada,H.,andOhashi,A.(2010)Detectionofsinglecopygenesbytwo-passtyramidesignalamplificationfluores-cenceinsituhybridization(two-passTSA-FISH)withsingleoligonucleotideprobes.MicrobesEnviron25:15–21.
Kemnitz,D.,Chin,K.J.,Bodelier,P.,andConrad,R.(2004)Communityanalysisofmethanogenicarchaeawithinariparianfloodinggradient.EnvironMicrobiol6:449–461.Kleikemper,J.,Pombo,S.A.,Schroth,M.H.,Sigler,W.V.,Pesaro,M.,andZeyer,J.(2005)Activityanddiversityofmethanogensinapetroleumhydrocarbon-contaminatedaquifer.ApplEnvironMicrobiol71:149–158.
Krivushin,K.V.,Shcherbakova,V.A.,Petrovskaya,L.E.,andRivkina,E.M.(2010)Methanobacteriumveterumspnov.,fromancientSiberianpermafrost.IntJSystEvolMicrobiol60:455–459.
Kubota,K.,Ohashi,A.,Imachi,H.,andHarada,H.(2006)VisualizationofmcrmRNAinamethanogenbyfluores-cenceinsituhybridizationwithanoligonucleotideprobeandtwo-passtyramidesignalamplification(two-passTSA-FISH).JMicrobiolMethods66:521–528.
Kubota,K.,Imachi,H.,Kawakami,S.,Nakamura,K.,Harada,H.,andOhashi,A.(2008)EvaluationofenzymaticcelltreatmentsforapplicationofCARD-FISHtomethanogens.JMicrobiolMethods72:–59.
Laloui-Carpentier,W.,Li,T.,Vigneron,V.,Mazeas,L.,andBouchez,T.(2006)Methanogenicdiversityandactivityinmunicipalsolidwastelandfillleachates.AntonieVanLeeu-wenhoek:423–434.
Lane,D.J.(1991)16S/23SrRNAsequencing.InNucleicAcidTechniquesinBacterialSystematics.Stackebrandt,E.,andGoodfellow,M.(eds).Chichester,UK:JohnWiley&Sons,pp.115–175.
Lehmann-Richter,S.,Grosskopf,R.,Liesack,W.,Frenzel,P.,andConrad,R.(1999)MethanogenicarchaeaandCO2-dependentmethanogenesisonwashedriceroots.EnvironMicrobiol1:159–166.
Li,T.L.,Mazeas,L.,Sghir,A.,Leblon,G.,andBouchez,T.(2009)Insightsintonetworksoffunctionalmicrobescatal-ysingmethanizationofcelluloseundermesophiliccondi-tions.EnvironMicrobiol11:8–904.
Liu,W.T.,Chan,O.C.,andFang,H.H.P.(2002)Microbialcommunitydynamicsduringstart-upofacidogenicanaero-bicreactors.WaterRes36:3203–3210.
Liu,Y.C.,andWhitman,W.B.(2008)Metabolic,phylogenetic,andecologicaldiversityofthemethanogenicarchaea.AnnNYAcadSci1125:171–1.
Lu,Y.H.,andConrad,R.(2005)Insitustableisotopeprobingofmethanogenicarchaeainthericerhizosphere.Science309:1088–1090.
Lu,Y.H.,Lueders,T.,Friedrich,M.W.,andConrad,R.(2005)Detectingactivemethanogenicpopulationsonricerootsusingstableisotopeprobing.EnvironMicrobiol7:326–336.
Ludwig,W.,Strunk,O.,Westram,R.,Richter,L.,Meier,H.,Yadhukumar,etal.(2004)ARB:asoftwareenvironmentforsequencedata.NucleicAcidsRes32:1363–1371.
Lueders,T.,Chin,K.J.,Conrad,R.,andFriedrich,M.(2001)Molecularanalysesofmethyl-coenzymeMreductasealpha-subunit(mcrA)genesinricefieldsoilandenrichmentculturesrevealthemethanogenicphenotypeofanovelarchaeallineage.EnvironMicrobiol3:194–204.
Lueders,T.,Pommerenke,B.,andFriedrich,M.W.(2004)Stable-isotopeprobingofmicroorganismsthrivingatther-modynamiclimits:syntrophicpropionateoxidationinfloodedsoil.ApplEnvironMicrobiol70:5778–5786.
Luton,P.E.,Wayne,J.M.,Sharp,R.J.,andRiley,P.W.(2002)ThemcrAgeneasanalternativeto16SrRNAinthephy-logeneticanalysisofmethanogenpopulationsinlandfill.Microbiology148:3521–3530.
McMahon,K.D.,Zheng,D.D.,Stams,A.J.M.,Mackie,R.I.,andRaskin,L.(2004)Microbialpopulationdynamicsduringstart-upandoverloadconditionsofanaerobicdigesterstreatingmunicipalsolidwasteandsewagesludge.BiotechnolBioeng87:823–834.
Manefield,M.,Whiteley,A.S.,Griffiths,R.I.,andBailey,M.J.(2002)RNAstableisotopeprobing,anovelmeansoflinkingmicrobialcommunityfunctiontoPhylogeny.ApplEnvironMicrobiol68:5367–5373.
Marchesi,J.R.,Weightman,A.J.,Cragg,B.A.,Parkes,R.J.,andFry,J.C.(2001)MethanogenandbacterialdiversityanddistributionindeepgashydratesedimentsfromtheCascadiaMarginasrevealedby16SrRNAmolecularanalysis.FEMSMicrobiolEcol34:221–228.
Mochimaru,H.,Yoshioka,H.,Tamaki,H.,Nakamura,K.,Kaneko,N.,Sakata,S.,etal.(2007)MicrobialdiversityandmethanogenicpotentialinahightemperaturenaturalgasfieldinJapan.Extremophiles11:453–461.
Mochimaru,H.,Tamaki,H.,Hanada,S.,Imachi,H.,Naka-mura,K.,Sakata,S.,andKamagata,Y.(2009)Methanolo-busprofundispnov.,amethylotrophicmethanogenisolatedfromdeepsubsurfacesedimentsinanaturalgasfield.IntJSystEvolMicrobiol59:714–718.
Nakamura,K.,Terada,T.,Sekiguchi,Y.,Shinzato,N.,Meng,X.Y.,Enoki,M.,andKamagata,Y.(2006)Applica-tionofpseudomureinendoisopeptidasetofluorescenceinsituhybridizationofmethanogenswithinthefamilyMethanobacteliaceae.ApplEnvironMicrobiol72:6907–6913.
Narihiro,T.,andSekiguchi,Y.(2007)Microbialcommunitiesinanaerobicdigestionprocessesforwasteandwastewatertreatment:amicrobiologicalupdate.CurrOpinBiotechnol18:273–278.
Narihiro,T.,Terada,T.,Kikuchi,K.,Iguchi,A.,Ikeda,M.,Yamauchi,T.,etal.(2009a)Comparativeanalysisofbac-terialandarchaealcommunitiesinmethanogenicsludgegranulesfromupflowanaerobicsludgeblanketreactors
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
16T.NarihiroandY.Sekiguchi
treatingvariousfood-processing,high-strengthorganicwastewaters.MicrobesEnviron24:88–96.
Narihiro,T.,Terada,T.,Ohashi,A.,Wu,J.H.,Liu,W.T.,Araki,N.,etal.(2009b)Quantitativedetectionofculturablemethanogenicarchaeaabundanceinanaerobictreatmentsystemsusingthesequence-specificrRNAcleavagemethod.ISMEJ3:522–535.
Nercessian,D.,Upton,M.,Lloyd,D.,andEdwards,C.(1999)Phylogeneticanalysisofpeatbogmethanogenpopula-tions.FEMSMicrobiolLett173:425–429.
Nercessian,O.,Prokofeva,M.,Lebedinski,A.,L’Haridon,S.,Cary,C.,Prieur,D.,andJeanthon,C.(2004)Designof16SrRNA-targetedoligonucleotideprobesfordetectingcul-turedandunculturedarchaeallineagesinhigh-temperatureenvironments.EnvironMicrobiol6:170–182.Nercessian,O.,Bienvenu,N.,Moreira,D.,Prieur,D.,andJeanthon,C.(2005)Diversityoffunctionalgenesofmetha-nogens,methanotrophsandsulfatereducersindeep-seahydrothermalenvironments.EnvironMicrobiol7:118–132.Neu,T.R.,Kuhlicke,U.,andLawrence,J.R.(2002)Assess-mentoffluorochromesfortwo-photonlaserscanningmicroscopyofbiofilms.ApplEnvironMicrobiol68:901–909.Nunoura,T.,Oida,H.,Toki,T.,Ashi,J.,Takai,K.,andHori-koshi,K.(2006)QuantificationofmcrAbyquantitativefluo-rescentPCRinsedimentsfrommethaneseepoftheNankaiTrough.FEMSMicrobiolEcol57:149–157.
Nunoura,T.,Oida,H.,Miyazaki,J.,Miyashita,A.,Imachi,H.,andTakai,K.(2008)QuantificationofmcrAbyfluorescentPCRinmethanogenicandmethanotrophicmicrobialcom-munities.FEMSMicrobiolEcol:240–247.
Orphan,V.J.,House,C.H.,Hinrichs,K.U.,McKeegan,K.D.,andDeLong,E.F.(2001)Methane-consumingarchaearevealedbydirectlycoupledisotopicandphylogeneticanalysis.Science293:484–487.
Ottesen,E.A.,Hong,J.W.,Quake,S.R.,andLeadbetter,J.R.(2006)MicrofluidicdigitalPCRenablesmultigeneanalysisofindividualenvironmentalbacteria.Science314:14–1467.
Ovreas,L.,Forney,L.,Daae,F.L.,andTorsvik,V.(1997)DistributionofbacterioplanktoninmeromicticlakeSaelen-vanner,asdeterminedbydenaturinggradientgelelectro-phoresisofPCR-amplifiedgenefragmentscodingfor16SrRNA.ApplEnvironMicrobiol63:3367–3373.
Penning,H.,Claus,P.,Casper,P.,andConrad,R.(2006)Carbonisotopefractionationduringacetoclasticmethano-genesisbyMethanosaetaconciliiincultureandalakesediment.ApplEnvironMicrobiol72:58–5652.
Plumb,J.J.,Bell,J.,andStuckey,D.C.(2001)Microbialpopulationsassociatedwithtreatmentofanindustrialdyeeffluentinananaerobicbaffledreactor.ApplEnvironMicrobiol67:3226–3235.
Poulsen,L.K.,Ballard,G.,andStahl,D.A.(1993)Useofribosomal-RNAfluorescenceinsituhybridizationformea-suringtheactivityofsinglecellsinyoungandestablishedbiofilms.ApplEnvironMicrobiol59:13–1360.
Radajewski,S.,Ineson,P.,Parekh,N.R.,andMurrell,J.C.(2000)Stable-isotopeprobingasatoolinmicrobialecology.Nature403:6–9.
Ramakrishnan,B.,Lueders,T.,Dunfield,P.F.,Conrad,R.,andFriedrich,M.W.(2001)Archaealcommunitystructuresinricesoilsfromdifferentgeographicalregionsbeforeand
afterinitiationofmethaneproduction.FEMSMicrobiolEcol37:175–186.
Raskin,L.,Poulsen,L.K.,Noguera,D.R.,Rittmann,B.E.,andStahl,D.A.(1994a)Quantificationofmethanogenicgroupsinanaerobicbiologicalreactorsbyoligonucleotideprobehybridization.ApplEnvironMicrobiol60:1241–1248.
Raskin,L.,Stromley,J.M.,Rittmann,B.E.,andStahl,D.A.(1994b)Group-specific16Sribosomal-RNAhybridizationprobestodescribenaturalcommunitiesofmethanogens.ApplEnvironMicrobiol60:1232–1240.
Raskin,L.,Zheng,D.D.,Griffin,M.E.,Stroot,P.G.,andMisra,P.(1995)Characterizationofmicrobialcommunitiesinanaerobicbioreactorsusingmolecularprobes.AntonieVanLeeuwenhoek68:297–308.
Reysenbach,A.-L.,andPace,N.R.(1995)Thermophiles.InArchaea:ALaboratoryManual.Robb,F.T.,andPlace,A.R.(eds).ColdSpringHarbor,NY,USA:ColdSpringHarbourPress,pp.101–107.
Rocheleau,S.,Greer,C.W.,Lawrence,J.R.,Cantin,C.,Laramee,L.,andGuiot,S.R.(1999)DifferentiationofMethanosaetaconciliiandMethanosarcinabarkeriinanaerobicmesophilicgranularsludgebyfluorescentinsituhybridizationandconfocalscanninglasermicroscopy.ApplEnvironMicrobiol65:2222–2229.
Sakai,S.,Imachi,H.,Hanada,S.,Ohashi,A.,Harada,H.,andKamagata,Y.(2008)Methanocellapaludicolagen.nov.,spnov.,amethane-producingarchaeon,thefirstisolateofthelineage‘RiceClusterI’,andproposalofthenewarchaealorderMethanocellalesord.nov.IntJSystEvolMicrobiol58:929–936.
Sakai,S.,Imachi,H.,Sekiguchi,Y.,Ohashi,A.,Harada,H.,andKamagata,Y.(2007)Isolationofkeymethanogensforglobalmethaneemissionfromricepaddyfields:anovelisolateaffiliatedwiththecloneclusterriceclusterI.ApplEnvironMicrobiol73:4326–4331.
Sakai,S.,Conrad,R.,Liesack,W.,andImachi,H.(2010)Methanocellaarvoryzaesp.nov.,ahydrogenotrophicmethanogen,isolatedfromItalianricefieldsoil.IntJSystEvolMicrobiol60:2918–2923.
Sawayama,S.,Tada,C.,Tsukahara,K.,andYagishita,T.(2004)Effectofammoniumadditiononmethanogeniccommunityinafluidizedbedanaerobicdigestion.JBiosciBioeng97:65–70.
Sawayama,S.,Tsukahara,K.,andYagishita,T.(2006)Phy-logeneticdescriptionofimmobilizedmethanogeniccom-munityusingreal-timePCRinafixed-bedanaerobicdigester.BioresourTechnol97:69–76.
Scanlan,P.D.,Shanahan,F.,andMarchesi,J.R.(2008)HumanmethanogendiversityandincidenceinhealthyanddiseasedcolonicgroupusingmcrAgeneanalysis.BMCMicrobiol8:79.
Schink,B.(1997)Energeticsofsyntrophiccooperationinmethanogenicdegradation.MicrobiolMolBiolRev61:262–280.
Sekiguchi,Y.(2006)Yet-to-beculturedmicroorganismsrel-evanttomethanefermentationprocesses.MicrobesEnviron21:1–15.
Sekiguchi,Y.,andKamagata,Y.(2004)Microbialcommunitystructureandfunctionsinmethanefermentationtechnol-ogyforwastewatertreatment.InStrictandFacultativeAnaerobes:MedicalandEnvironmentalAspects.Nakano,
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
Probesformethanogens17
M.M.,andZuber,P.(eds).Norfolk,UK:HorizonBio-science,pp.361–384.
Sekiguchi,Y.,Kamagata,Y.,Nakamura,K.,Ohashi,A.,andHarada,H.(1999)Fluorescenceinsituhybridizationusing16SrRNA-targetedoligonucleotidesrevealslocalizationofmethanogensandselectedunculturedbacteriainmeso-philicandthermophilicsludgegranules.ApplEnvironMicrobiol65:1280–1288.
Sekiguchi,Y.,Uyeno,Y.,Sunaga,A.,Yoshida,H.,andKama-gata,Y.(2005)Sequence-specificcleavageof16SrRNAforrapidandquantitativedetectionofparticulargroupsofanaerobesinbioreactors.WaterSciTechnol52:107–113.Shcherbakova,V.A.,Rivkina,E.M.,Pecheritsyna,S.,Lauri-navichuis,K.,Suzina,N.E.,andGilichinsky,D.(2010)Methanobacteriumarcticumsp.nov.,methanogenicarchaeonfromHoloceneArcticpermafrost.IntJSystEvolMicrobiol(inpress):doi:10.1099/ijs.1090.021311-021310.Shigematsu,T.,Tang,Y.Q.,Kawaguchi,H.,Ninomiya,K.,Kijima,J.,Kobayashi,T.,etal.(2003)Effectofdilutionrateonstructureofamesophilicacetate-degradingmethano-geniccommunityduringcontinuouscultivation.JBiosciBioeng96:7–558.
Shigematsu,T.,Tang,Y.Q.,Kobayashi,T.,Kawaguchi,H.,Morimura,S.,andKida,K.(2004)Effectofdilutionrateonmetabolicpathwayshiftbetweenaceticlasticandnonace-ticlasticmethanogenesisinchemostatcultivation.ApplEnvironMicrobiol70:4048–4052.
Shinzato,N.,Watanabe,I.,Meng,X.Y.,Sekiguchi,Y.,Tamaki,H.,Matsui,T.,andKamagata,Y.(2007)PhylogeneticanalysisandfluorescenceinsituhybridizationdetectionofarchaealandbacterialendosymbiontsintheanaerobicciliateTrimyemacompressum.MicrobEcol:627–636.Skillman,L.C.,Evans,P.N.,Naylor,G.E.,Morvan,B.,Jarvis,G.N.,andJoblin,K.N.(2004)16SribosomalDNA-directedPCRprimersforruminalmethanogensandidentificationofmethanogenscolonisingyounglambs.Anaerobe10:277–285.
Smith,J.M.,Green,S.J.,Kelley,C.A.,Prufert-Bebout,L.,andBebout,B.M.(2008)Shiftsinmethanogencommunitystructureandfunctionassociatedwithlong-termmanipu-lationofsulfateandsalinityinahypersalinemicrobialmat.EnvironMicrobiol10:386–394.
Sorensen,A.H.,andAhring,B.K.(1997)Animprovedenzyme-linkedimmunosorbentassayforwhole-celldeter-minationofmethanogensinsamplesfromanaerobicreac-tors.ApplEnvironMicrobiol63:2001–2006.
Springer,E.,Sachs,M.S.,Woese,C.R.,andBoone,D.R.(1995)PartialgenesequencesfortheAsubunitofmethyl-coenzymeMreductase(mcrI)asaphylogenetictoolforthefamilyMethanosarcinaceae.IntJSystBacteriol45:5–559.
Stahl,D.A.,andAmann,R.(1991)Developmentandappli-cationofnucleicacidprobes.InNucleicAcidTechniquesinBacterialSystematics.Stackebrandt,E.,andGoodfellow,M.(eds).Chichester,UK:Wiley,pp.205–248.
Stahl,D.A.,Flesher,B.,Mansfield,H.R.,andMontgomery,L.(1988)Useofphylogeneticallybasedhybridizationprobesforstudiesofruminalmicrobialecology.ApplEnvironMicrobiol:1079–1084.
Steinberg,L.M.,andRegan,J.M.(2008)Phylogeneticcom-parisonofthemethanogeniccommunitiesfromanacidic,
oligotrophicfenandananaerobicdigestertreatingmunici-palwastewatersludge.ApplEnvironMicrobiol74:6663–6671.
Steinberg,L.M.,andRegan,J.M.(2009)mcrA-targetedreal-timequantitativePCRmethodtoexaminemethanogencommunities.ApplEnvironMicrobiol75:4435–4442.
Strapoc,D.,Picardal,F.W.,Turich,C.,Schaperdoth,I.,Macalady,J.L.,Lipp,J.S.,etal.(2008)Methane-producingmicrobialcommunityinacoalbedoftheIllinoisBasin.ApplEnvironMicrobiol74:2424–2432.
Sul,W.J.,Park,J.,Quensen,J.F.,Rodrigues,J.L.M.,Seliger,L.,Tsoi,T.V.,etal.(2009)DNA-stableisotopeprobinginte-gratedwithmetagenomicsforretrievalofbiphenyldioxy-genasegenesfrompolychlorinatedbiphenyl-contaminatedriversediment.ApplEnvironMicrobiol75:5501–5506.Tabatabaei,M.,Rahim,R.A.,Abdullah,N.,Wright,A.-D.G.,Shirai,Y.,Sakai,K.,etal.(2010)Importanceofthemetha-nogenicarchaeapopulationsinanaerobicwastewatertreatments.ProcessBiochem45:1214–1225.
Takai,K.,Nakamura,K.,Toki,T.,Tsunogai,U.,Miyazaki,M.,Miyazaki,J.,etal.(2008)Cellproliferationat122degreesCandisotopicallyheavyCH4productionbyahyperther-mophilicmethanogenunderhigh-pressurecultivation.ProcNatlAcadSciUSA105:10949–109.
Talbot,G.,Topp,E.,Palin,M.F.,andMasse,D.I.(2008)Evaluationofmolecularmethodsusedforestablishingtheinteractionsandfunctionsofmicroorganismsinanaerobicbioreactors.WaterRes42:513–537.
Tang,Y.Q.,Shigematsu,T.,Morimura,S.,andKida,K.(2005)Microbialcommunityanalysisofmesophilicanaerobicproteindegradationprocessusingbovineserumalbumin(BSA)-fedcontinuouscultivation.JBiosciBioeng99:150–1.
Tatsuoka,N.,Mohammed,N.,Mitsumori,M.,Hara,K.,Kuri-hara,M.,andItabashi,H.(2004)Phylogeneticanalysisofmethylcoenzyme-Mreductasedetectedfromthebovinerumen.LettApplMicrobiol39:257–260.
Thauer,R.K.(1998)Biochemistryofmethanogenesis:atributetoMarjoryStephenson.Microbiology144:2377–2406.
Thauer,R.K.,andShima,S.(2008)Methaneasfuelforanaerobicmicroorganisms.AnnNYAcadSci1125:158–170.
Tringe,S.G.,andHugenholtz,P.(2008)Arenaissanceforthepioneering16SrRNAgene.CurrOpinMicrobiol11:442–446.
Tung,H.C.,Bramall,N.E.,andPrice,P.B.(2005)MicrobialoriginofexcessmethaneinglacialiceandimplicationsforlifeonMars.ProcNatlAcadSciUSA102:18292–18296.Ufnar,J.A.,Ufnar,D.F.,Wang,S.Y.,andEllender,R.D.(2007)Developmentofaswine-specificfecalpollutionmarkerbasedonhostdifferencesinmethanogenmcrAgenes.ApplEnvironMicrobiol73:5209–5217.
Uyeno,Y.,Sekiguchi,Y.,Sunaga,A.,Yoshida,H.,andKama-gata,Y.(2004)Sequence-specificcleavageofsmall-subunit(SSU)rRNAwitholigonucleotidesandRNaseH:arapidandsimpleapproachtoSSUrRNA-basedquantita-tivedetectionofmicroorganisms.ApplEnvironMicrobiol70:3650–3663.
Vavilin,V.A.,Qu,X.,Mazeas,L.,Lemunier,M.,Duquennoi,C.,He,P.J.,andBouchez,T.(2008)Methanosarcinaasthe
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
18T.NarihiroandY.Sekiguchi
dominantaceticlasticmethanogensduringmesophilicanaerobicdigestionofputresciblewaste.AntonieVanLeeuwenhoek94:593–605.
Vianna,M.E.,Holtgraewe,S.,Seyfarth,I.,Conrads,G.,andHorz,H.P.(2008)Quantitativeanalysisofthreehydro-genotrophicmicrobialgroups,methanogenicarchaea,sulfate-reducingbacteria,andacetogenicbacteria,withinplaquebiofilmsassociatedwithhumanperiodontaldisease.JBacteriol190:3779–3785.
Visser,F.A.,vanLier,J.B.,Macario,A.J.L.,anddeMacario,E.C.(1991)Diversityandpopulationdynamicsofmetha-nogenicbacteriainagranularconsortium.ApplEnvironMicrobiol57:1728–1734.
Wang,F.P.,Zhou,H.Y.,Meng,J.,Peng,X.T.,Jiang,L.J.,Sun,P.,etal.(2009)GeoChip-basedanalysisofmetabolicdiversityofmicrobialcommunitiesattheJuandeFucaRidgehydrothermalvent.ProcNatlAcadSciUSA106:4840–4845.
Weijers,J.W.H.,Schouten,S.,vanderLinden,M.,vanGeel,B.,andDamste,J.S.S.(2004)Watertablerelatedvaria-tionsintheabundanceofintactarchaealmembranelipidsinaSwedishpeatbog.FEMSMicrobiolLett239:51–56.Wright,A.D.G.,andPimm,C.(2003)Improvedstrategyforpresumptiveidentificationofmethanogensusing16Sribo-printing.JMicrobiolMethods55:337–349.
Wu,J.H.,andLiu,W.T.(2007)QuantitativemultiplexinganalysisofPCR-amplifiedribosomalRNAgenesbyhier-archicaloligonucleotideprimerextensionreaction.NucleicAcidsRes35:e82.
Yanagita,K.,Kamagata,Y.,Kawaharasaki,M.,Suzuki,T.,Nakamura,Y.,andMinato,H.(2000)Phylogeneticanaly-sisofmethanogensinsheeprumenecosystemanddetectionofMethanomicrobiummobilebyfluorescenceinsituhybridization.BiosciBiotechnolBiochem:1737–1742.
Yarza,P.,Richter,M.,Peplies,J.,Euzeby,J.,Amann,R.,Schleifer,K.H.,etal.(2008)TheAll-SpeciesLivingTreeproject:a16SrRNA-basedphylogenetictreeofallsequencedtypestrains.SystApplMicrobiol31:241–250.
Yashiro,Y.,Sakai,S.,Ehara,M.,Miyazaki,M.,Yamaguchi,T.,andImachi,H.(2009)Methanoregulaformicicasp.nov.,anovelmethane-producingarchaeonisolatedfrommetha-nogenicsludge.IntJSystEvolMicrobiol(inpress):doi:10.1099/ijs.1090.014811-014810.
Yu,Y.,Lee,C.,Kim,J.,andHwang,S.(2005)Group-specificprimerandprobesetstodetectmethanogeniccommuni-tiesusingquantitativereal-timepolymerasechainreaction.BiotechnolBioeng:670–679.
Yu,Y.,Kim,J.,andHwang,S.(2006)Useofreal-timePCRforgroup-specificquantificationofaceticlasticmethano-gensinanaerobicprocesses:populationdynamicsandcommunitystructures.BiotechnolBioeng93:424–433.Yu,Z.T.,Garcia-Gonzalez,R.,Schanbacher,F.L.,andMor-rison,M.(2008)Evaluationsofdifferenthypervariableregionsofarchaeal16SrRNAgenesinprofilingofmetha-nogensdenaturingbyArchaea-specificPCRandgradientgelelectrophoresis.ApplEnvironMicrobiol74:8–3.Zhang,G.S.,Jiang,N.,Liu,X.L.,andDong,X.Z.(2008a)Methanogenesisfrommethanolatlowtemperaturesbyanovelpsychrophilicmethanogen,‘Methanolobuspsychro-philus’spnov.,prevalentinZoigewetlandoftheanplateau.ApplEnvironMicrobiol74:6114–6120.
Zhang,G.S.,Tian,J.Q.,Jiang,N.,Guo,X.P.,Wang,Y.F.,andDong,X.Z.(2008b)MethanogencommunityinZoigewetlandofanplateauandphenotypiccharacterizationofadominantunculturedmethanogenclusterZC-I.EnvironMicrobiol10:1850–1860.
Zhang,T.,andFang,H.H.P.(2006)Applicationsofreal-timepolymerasechainreactionforquantificationofmicroorgan-ismsinenvironmentalsamples.ApplMicrobiolBiotechnol70:281–2.
Zheng,D.,andRaskin,L.(2000)QuantificationofMethano-saetaspeciesinanaerobicbioreactorsusinggenus-andspecies-specifichybridizationprobes.MicrobialEcol39:246–262.
Zheng,D.,Angenent,L.T.,andRaskin,L.(2006)Monitoringgranuleformationinanaerobicupflowbioreactorsusingoligonucleotidehybridizationprobes.BiotechnolBioeng94:458–472.
©2011TheAuthors
Journalcompilation©2011SocietyforAppliedMicrobiologyandBlackwellPublishingLtd,MicrobialBiotechnology
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- ryyc.cn 版权所有 湘ICP备2023022495号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务