arXiv:quant-ph/9708011v1 6 Aug 1997M.Rigo,F.Mota-FurtadoandP.F.O’Mahony
DepartmentofMathematics,RoyalHolloway,UniversityofLondon,Egham,SurreyTW200EX,UK
Abstract.Thesetofcontinuousnorm-preservingstochasticSchr¨odingerequationsassociatedwiththeLindbladmasterequationisintroduced.Thissetisusedtodescribethelocalizationpropertiesofthestatevectortowardeigenstatesoftheenvironmentoperator.Particularfocusisplacedondeterminingthestochasticequationwhichexhibitsthehighestrateoflocalizationforwideopensystems.Anequationhavingsuchapropertyisproposedinthecaseofasinglenon-hermitianenvironmentoperator.Thisresultisrelevanttonumericalsimulationsofquantumtrajectorieswherelocalizationpropertiesareusedtoreducethenumberofbasisstatesneededtorepresentthesystemstate,andtherebyincreasethespeedofcalculation.
1.Introduction
Aquantumsysteminteractingwithitsenvironmentcanbedescribed,intheMarkovianapproximation,bytwocomplementaryapproaches.Inthefirstandmostcommonlyused[1,2,3],thesystemisrepresentedbyadensityoperatoranditsevolutionisdescribedbyamasterequation.InthesecondastatevectorrepresentsthesystemandastochasticSchr¨odingerequationdescribesthestateevolution[4,5,6]Thesetwotreatmentsareequivalentinthefollowingsense:foralltimesanensembleofstatevectorsgeneratedbyastochasticSchr¨odingerequationreproduces,onaverage,thedensityoperatorgeneratedbythemasterequation.Thecorrespondenceisnotuniquelydefined,inthatforasinglemasterequationtherearemanyassociatedstochasticequations.
Stochasticstatevectorequations,alsocalledunravelingsofthemasterequation,havebeenintroducedindifferentcontextsandwithdifferentinterpretations.Inthefundamentaltheoryofquantummeasurement,stochasticequationshavebeenusedtodescribethegeneraldynamicalprocessofthestatecollapseintoaneigenstateofthemeasuredobservable,i.e.localization[4,7,8,9,10,11,12,13].Inquantumoptics,stochasticSchr¨odingerequationshavebeenusedtodescribethesystemstateconditionedbymeasurementoutcomes.Inthiscontext,anunravelingcorrespondsto
2
aspecifiedmeasurementscheme,suchasphotoncounting,heterodyneorhomodynedetection[6,14].Moregenerally,inthefieldofopenquantumsystems,unravelingshavebeenusedasanefficientnumericalmethodtosolvethemasterequation[15,16,17,18,19,20,21,22,23,24,25,26].
Thepresentworkismotivatedbyarecentstudyofaquantumsystemininteractionwithathermalbathusingthequantumjump(QJ)unraveling[27].Itisshownthat,undersomeassumptionsvalidintheclassicallimit,theQJtrajectories,i.e.,therealizationofthestochasticprocess,approachadiffusivelimitverysimilartotheoneexhibitedbythequantumstatediffusion(QSD)trajectories.Sincediffusionisexpectedtobeageneralfeatureassociatedwiththeemergenceofclassicality,adescriptionofthewholesetofcontinuousunravelingsbecomesimportant.Thissetisintroducedinaunifiedwayinthefollowingsection.Wewillshowthateachcontinuousunravelingcanbecharacterizedverysimplybyspecifyingitsnoisecorrelations.Thesetofcontinuousunravelingsisthenusedtostudyhowquantumstateproperties,suchaslocalization,evolvewhentheunravelingchanges.
Averyimportantcharacteristicofquantumtrajectorieswhichhasbothphysicalandnumericalconsequencesisthelocalizationofquantumstatestowardeigenstatesoftheenvironmentoperator.Workingwiththerealnoiseunraveling(RN),Gisin[7]hasshownthatforanarbitraryhermitianLindbladoperatorLthestatevectorsconcentrateontheeigenspaceofL.Percival[9]extendedthisresultbygivingaproperdefinitionoftheensemblelocalizationofanarbitraryoperatorandthenprovidinganalyticalboundsfortherateofself-localizationofhermitianandnonhermitianLindbladoperatorsforthequantumstatediffusionunraveling.Foradissipativeinteraction,GarrawayandKnight[28,29]havepresentednumericalsimulationsofthelocalizationprocessusingtheQJandQSDunravelings.Startingfromdifferentquantumstates,suchasasuperpositionoftwocoherentstates,aFockstateandasqueezedgroundstate,theyhaveshownthatsuchstatesarehighlysensitivetodissipation.Theyalsoillustratedthelocalizationprocess.RecentlytheyhaveappliedtheirresultstodescribetheevolutionofaSchr¨odingercatstateinaKerrmediumwherelocalizationcompeteswithnonlineareffects[30](seealso[31]).
Fornumericalsimulationofopenquantumsystems,individualtrajectorieshaveprovenadvantageousoverdensityoperatorcomputations.Themainadvantagesstemfromthefactthatlessspaceisneededtostoreandpropagateintimeastatevectorthanadensitymatrix.Inaddition,fortrajectorymethodsonecanexploitthelocalizationpropertytoreducethenumberofbasisstatesneededtorepresentthestatevector,thussignificantlyreducingthetimeneededtocalculatequantumtrajectories.Forquantumjumpunravelings,whenmanyLindbladoperatorsarepresent,itiswellknownthatonecanperformaunitarytransformationtoselectoneofthequantumjumpsunravelings,insuchawayastominimizethenumberofbasisstatesneeded(seeref.[22]foran
3
applicationofthisproperty).ThelocalizationofthestatevectorforQSDhasbeenexploitedinthemixedrepresentationofSteimleandal.[23]andthemovingbasisofSchackandal.[24,25,26].
Insection3weusethesetofcontinuousunravelingstodescribelocalizationpropertiesforasingleenvironmentoperator.Severalwellknownresultsarerecoveredforahermitianoperator[4,32].Inthecaseofanon-hermitianoperatortheminimalrateoflocalizationintroducedfortheQSDunraveling[9,11,12]isextendedtothecompletesetshowingthatlocalizationisageneralfeaturesharedbyallthecontinuousunravelings,andanewunravelingisintroduced.Sometheoreticalargumentssupportedbynumericalsimulationssuggestthatthisnewunravelingpossessesthehighestlocalizationrate.
Inthepresentworkwemakeuseofthefreedomofchoiceforthenoisecorrelationstoobtainthecontinuousunravelingwhichlocalizesthestatevectorthemost.Thistransformationshouldnotbeconfusedwiththeunitarytransformationdiscussedabove.Thesetwotransformationsarecomplementaryandcanbeusedtogether.Attheendofsection3wecomparethelocalizationpropertiesofQSDandofourproposedunraveling.
Finally,insection4wesummarizeourresultsanddrawconclusionsabouttheapplicabilityofthesetofcontinuousunravelingstothestudyofthequasi-classicallimitofopenquantumsystems.2.
Continuousunravelings
WeproceedfollowingcloselythederivationofthequantumstatediffusionunravelingbyGisinandPercival[8].Inthiswork,ageneralstochasticdifferentialequationwithacomplexWienerprocessisusedasastartingpoint.ThedriftandnoisetermsarethenspecifiedbyaskingthatthestochasticdifferentialequationrecoversonaveragetheLindbladmasterequationforthedensityoperatorρofthesystem
ρ˙=−
i
2
{L†jLj,ρ}
,(1)
whereHisthesystemHamiltonianandLj(j=1,...,J)thesetofLindbladoperators
whichrepresenttheinfluenceoftheenvironment.(Sincethemasterequation(1)isvalidunderaMarkovianapproximation,allthestochasticdifferentialequationsconsideredapplyonlywithinthisapproximation).Theotherconditionsneededtospecifythedriftandnoisetermsarethatthestateremainsnormalizedandthatthestochasticequationsharesthesameinvariancepropertiesunderunitarytransformationsasthemasterequation.ThislastconstraintisusedtoprovetheuniquenessofQSDamongthesetofcontinuousunravelings.RemovingtheconstraintofinvarianceunderunitarytransformationsamongtheLindbladoperators,weobtainthesetofcontinuousnorm-preservingunravelingsrelatedtothemasterequation.
4
2.1.DerivationofthestochasticSchr¨odingerequations
WestartbyconsideringageneralstochasticdifferentialequationofthefollowingItˆoformwhichgivesthevariation|dψofthestatevector|ψinatimedt
|dψ=|vdt+
J
j=1
|uj
n=1
N
αjndWjn
(2)
where|vand|ujarevectors,αjnarecomplexnumbersanddWjnindependentreal
Wienerprocesses[33]whichobeythefollowingrelationships
M(dWjn)=0
dWjndWkm=δjkδmndt
dWjndt=0
(3)
whereMrepresentstheensembleaverage.Thetwoconditionstoberespectedbythepreviousequation(2)are(i)thestateisnormalizedforalltimesψ|ψt=1and(ii)foreachtime,themeanoftheprojectorassociatedtothestate|ψgivesthedensitymatrixρ=M(|ψψ|)withthedensitymatrixρevolvingaccordingtothemasterequationinLindbladform(1).Inthefollowing,thesetwoconditionswillbeusedtorelatethedriftterm|vandthestochasticterm|ujtothestate|ψaswellasgivingconstraintsonthecomplexnumbersαjn.Noticethattheαjnmayalsodependonthestate|ψandontimet.
ByfollowingcloselytheQSDderivationgiveninreference[8],weobtaintheexpressionforthedriftterm
|v=−
i
2
j
L†jLj
+
L†jψLjψ
−
2L†jψLj
|ψ(4)
whichdiffersfromtheQSDderivationbytheintroductionofthenormalizationfactor
(n|αjn|2)−1/2andthesetofcomplexnumbersβjk.ThelatterarearbitrarycoefficientsofaJ×Junitarymatrixwhicharisesduetothefreedomofchoiceinthelinearcombinationofvectors(Lk−Lkψ)|ψusedtoexpress|uj.
Finallyonegetstheequationforthestatevectorincrement
|dψ=−
+i
J
whereLjψ=ψ|Lj|ψistheexpectationvalueofLjforthestate|ψ.Thedriftterm
|visthesameasthatobtainedintheQSDderivation,butthestochasticvectors|ujbecome
1
|uj=βjk(Lk−Lkψ)|ψj=1...J(5)
2
kn|αjn|
2j=1
k=1
J
L†jLj
+
L†jψLjψ
−
2L†jψLj
|ψdt
(6)
(Lk−Lkψ)|ψdζk
5
Thisequationshowsthatalltheindeterminacyduetothecoefficientsαjnandtotheunitarytransformation(βjk)canbeincludedinthenoisetermsdζjwhicharegivenby
dζk=
J
βjk
j=1
n
ItcanbeseeneasilythattheyhavezeromeanM(dζj)=0andcorrelations
∗
dζjdζk=δjkdt
αjndWjn
n
|αjn|2
(7)
anddζjdζk=cjkdt(8)
wherecjkarecorrelationcoefficientsrelatedtotheunitarytransformation(βjk)andthe
noisecoefficientsαininthefollowingway
cjk=
Ji=1
βijβikciwithci=
n
2
αin
2forallj.Inthisspecialcasethecorrelationscjkvanish.
2.2.Unitarytransformation
LetusintroducethefollowingunitarytransformationamongLindbladoperators
Lj=
k
˜k−λj1ujkL1
(10)
6
whereujkandλjarecomplexnumbersand(ujk)aunitarymatrix[8,9,35].Withthis
˜k=jujkdζjwiththecorrelationstransformationthenoisetermsbecomedζ
˜jdζ˜∗dζk
=δjkdt
and
˜jdζ˜k=dζ
m,n=1J
umjunkcmndt(11)
Thesecorrelationswilldependontheunitarytransformation(ujk)unlessallthe
correlationfactorsvanish,i.e.cjk=0.Since(βjk)isitselfaunitarytransformation,anecessaryconditionforinvarianceunderunitarytransformationisgivenby
cj=0forallj=1,...,J.
(12)
WhenonlyoneWienerprocessN=1ispresent,theunitaryinvariancecondition(12)impliesαj1=0forallj.AsaconsequencethereisnoinvariantunravelingwithonlyoneWienerprocess.WithtwoWienerprocessesN=2,theinvarianceconditionbecomes22αj1+αj2=0.Thenormofthetwocomplexnumbersisthesame|αj1|=|αj2|andthephasesarerelatedbyφj1−φj2=π/2+nπwherenisanyintegernumber.Thesimplestcasen=0leadsto
dζj=eiφj
dWj1+idWj2
2
(13)
whichcorrespondtothecomplexnoiseusedintheQSDunravelingwhenthephasesφjaresettozero.Thesimplestcasewhichcansatisfytheinvariancecondition(12)isgivenbytheQSDunraveling.Thephasesφjandotherchoicesofnintroduceonlyirrelevantphasefactorswhichcanbeneglected.ThisistheuniquenessresultofGisinandPercivalforQSD.IfoneconsidersmorethantwoWienerprocessesN≥3,itispossibletoconstructotherunravelingsinvariantunderunitarytransformation.Forinstance:
dW1+eiπ/3dW2+e−iπ/3dW3
dζ=
3
(14)
wherewehaveomittedtheindexjandthephasefactor.Sincealltheseunravelingshavethesamecorrelationsdζ2=0and|dζ|2=dt,theyareequivalent[33]andcanbereplacedbytheQSDunraveling.3.
Localization
Asanapplicationofthesetofcontinuousunravelingobtainedinthepresentwork,onecancomputetherateofself-localizationofasingleenvironmentoperatorLforawideopensystem,i.e.H=0,anddeterminetheeffectofthenoisecorrelationontherateofself-localization.Therateofself-localizationisdefinedastherateatwhichtheensembleaverageofthequantummeansquaredeviationdecays[9].Itisalsothe
7
ensembleaveragerateatwhichthestatevector|ψtendstowardsoneofthe(right-)eigenstatesoftheLindbladoperator.Thequantummeansquaredeviation†oftheoperatorLisdefinedasσ2(L)=L†Lψ−L†ψLψ.Moregenerallythequantumcovarianceoftwooperatorsforthestate|ψisσ(A,B)=A†Bψ−A†ψBψ[9].NotethatthequantumcovarianceofLwithitselfisjustthequantummeansquaredeviationσ2(L)=σ(L,L).Werestrictourattentiontoawideopensystembecausewewanttodescribethelocalizationprocess,independentlyoftheactionoftheHamiltonian.This,clearly,isonlyafirststeptowardsaproperunderstandingoflocalizationwhichshouldinvolveHamiltonianeffectsaswell.3.1.Hermitianenvironmentoperator
ForawideopensystemwithahermitianenvironmentoperatorL=L†thestatevector|ψevolvesaccordingto
|dψ=−
1
(18)=−2(1+Re(c))Mσ(L)
dt
Thenoisecorrelationcisacharacteristicsignatureofthechosenunraveling.Forc=0,thequantumstatediffusionresult,givingaminimallocalizationrateof2,isrecovered[9].Inthiscase,asinalmostallcases,themeansquaredeviationtendstozero,thusthestate|ψevolvestowardsoneeigenstateofL.Therealnoise(RN)unravelingc=1isclearlytheonewhichgivesthehighestrateofself-localization.Asaconsequence,fornumericalsimulationsinvolvinganarbitraryHamiltonianandonehermitianenvironmentoperator,theRNunravelingshouldbeusedsinceitwillproduce
†Notethatthequantummeansquaredeviationisnotanensembleaverage.
22
8
thefastestlocalization(forcontinuousunravelings).IntheoppositecasetotheRNunraveling,ifoneusestheimaginarynoiseunravelingc=−1,themeanlocalizationratevanishesandthestatedoesnotevolvetowardsaneigenstateofL.Recoveringthesewellknownresults[4,32]confirmsthevalidityofequation(15).3.2.Nonhermitianenvironmentoperator
WeconsiderthecaseofasinglenonhermitianLindbladoperator.Sincethiscaseismoredifficulttotreat,werestrictourselvestothemorespecificcaseofanannihilation
√
operatorL=
κRe
†
whichinvolvesthequantumcovarianceσ(a†,a)=a2ψ−a2ψ.Theequationforσ(a,a)canalsobederivedtogive
σ(aa,a)−aψσ(a,a)−aψσ(a)dζ
†††
2
(19)
dσ(a,a)=−κ(1+2σ(a))σ(a,a)+cσ(a,a)+cσ(a)
√+2
†
2
††
2
∗2
2
dt
thethirdtermofthisexpressionbeingpositivesince|c|≤1.Asaconsequence,theargumentforglobalstabilityofcoherentstates,
Mdσ2(a)
|σ(a†,a)|
}(21)
9
independentofthechoiceofunraveling.Thisresultshowsthat,foranannihilationoperator,allunravelingslocalizeandκprovidesaminimalbound,independentoftheunraveling,fortheensemblemeanlocalizationrate.
Forahermitianoperator,theunravelingwhichlocalizesthemostwaseasytofindsincetheevolutionofthequantummeansquaredeviationisnotcoupledtoanyothermoment.Furthermorethecorrelationfactorcfactorises,makingtheunravelingindependentofthestate.Inthepresentcasethesituationismorecomplex,sincenoneofthesetwosimplifyingconditionsaresatisfied.Inthecaseofanannihilationoperator,weadoptthefollowingtechnique.Insteadofconsideringthelocalizationofanarbitrarystate|ψ,werestrictourattentiontosqueezedstates.Wewillshowthatunraveling(15)withL=
√
every
1−|γ=γσtwheretheindexsspecifiesthat|2
ts(a†,a)∗
(24)
themeansquaredeviationistakenwithrespecttothesqueezedstate|γt,αtdependsonlyonthesqueezing.Thisparameter.
lastrelationtellsusthatthemeansquaredeviationAconditiontocheckifsqueezedstatesarepreservedcanbeobtainedbydifferentiating(23)[11,35].Inordertosimplifythecalculation,theStratonovichformalismisused.Inthisformalism,theusualdifferentiationrulesapply.Thusfrom(23),astate|ψinitiallysqueezedwillremainsqueezedifitispossibletowrite
(a−γta†−αt)|dψ=(dγta†+dαt)|ψ
(25)
where|dψistobeexpressedinStratonovichform.Fromequation(15)andusingtheusualconversionformulaX◦dY=XdY+1
†2LL−2L†
ψ(L−Lψ)−
c
|ψdt
10
+(L−Lψ)|ψ◦dζ
(26)
Insertingthisexpressioninthecondition(25),onefindsnotonlythatsqueezedstatesarepreservedbutalsotheequationsforthesqueezingparametersare
dγt=−κγt(1+cγt)dt
κ
dαt=−
(27)
κγtdζ
(28)
writteninItˆoform.Sincetheevolutionofthesqueezingparameterγtisdeterministic,itiseasytofindtheunravelingwhichproducesthefastestsqueezingdecay.Itisgivenbythefollowingcorrelationfactor
∗γt
c=
11
Ifthesystemstateisnotasqueezedstate,thepreviousderivationdoesnotapplyanymore.Nevertheless,wecantrytogeneralizetheresultforanarbitrarystate.Usingtherelation(24)betweensqueezingparameterandmeanquantumdeviation,thesameunravelingcanbespecifiedas
c=
σ(a†,a)∗
superpositionofcoherentstates(|α+|−α)/
√
2anda
12
2520M σ2(a)15105000.010.020.030.04κt0.050.060.07Figure1.Ensembleaverageofthequantummeansquaredeviationσ2(a)showingtheshorttimescalelocalization.TheinitialstateistheFockstate|24.Eachcurverepresentadifferentunraveling:theunraveling(31)(——),QSD(----)andRealNoise(—·—).Theensembleaverageiscomputedusing1000trajectories.Theerrorsbarsindicatethe95%-confidenceintervals.
2520M σ2(a)15105000.010.020.030.04κt0.050.060.07Figure2.Asfigure1,butwiththeinitialstateinasuperpositionoftwoFockstates2−1/2(|23+|25).
13
2015M σ2(a)105000.010.020.030.04κt0.050.060.07Figure3.Asfigure1,butwiththeinitialstateinasuperpositionoftwocoherentstates2−1/2(|α+|−α)withα=4.
10010M σ2(a)10.10.010.00100.511.5κt22.53Figure4.Asfigure2,butforalongertimescale.
14
acorrelationfactorgivenby
†c=
σ(L,L)∗
2(q)
|σ(q†,q)|
=
σ¯χa†2a2
subjecttodissipationL=
√
2
h(34)
15
1.2
(a)
10.80.60.40.20
0.2
Var{σ(a)}M σ2(a)0.6
21
(b)
0.8
0.4
01234
5λ
6710
0
01234
5λ
6710
Figure5.Ensembleaverage(a)andvariance(b)ofthequantummeansquaredeviationσ2(a)versusthescalingparameterλforthekickedanharmonicoscillator.TheuppercurvecorrespondstotheQSDunravelingandthelowercurvetothetimedependentunraveling(31).Theerrorsbarstakeintoaccountstatisticalaswellasnumericalaccuracyuncertainties.
Infigure5,theensembleaverageandvarianceofthequantumsquaredeviationσ2(a)arerepresentedfordifferentvaluesofthescalingparameterλ.Thevaluesrepresentedarestationaryresultsobtainedbyintegratingtheequationsofmotionsovertypically2500periodsandtakingthemeanoverasingletrajectory.Suchalongintegrationintimeisnecessaryinordertoobtainaproperaverageoverthestrangeattractorofthechaoticsystem.Thesystemparametersaresettothefollowingvaluesχ=1,β0=2,κ=0.5,τ1=0.98andτ2=1forwhichtheclassicalsystemisknowntobechaotic.Theprecisionofthenumericalresultsisestimatedbyrepeatingthecalculationsfordifferentnumericalparameterssuchasthetimestepsize.
Figure5(a)showsforbothunravelingsaslowlydecayingensembleaverageMσ2(a)foranincreasingvalueofthescalingλ.Noticethattheamplitudeofmotionrescalesasλthustheratioσ2(a)/Ma†atendstowardszerowhenλ→∞,providinganumericaljustificationfortheemergenceoftheclassicalattractor.Furthermore,fig5(a)showsthattheunraveling(31)reduces,comparedtotheQSDunraveling,thestationaryvalueofthemeansizeofthewavepacket.Thereductioncanbeupto20%dependingonthescaleparameterλ,thelargestreductionbeingachievedinthequantumregime.
Moreimportantisthereductionofthesizeofthefluctuationsshowninfig5(b).ThepicturesuggestedisthateachtimethewavepacketdeviatesfromacoherentstatetheQSDunravelingtendstorestoretheshapebyapplyingahomogeneousnoise,whiletheunraveling(31)adaptsbyapplyinganon-homogeneousnoiseinthedirectionofthelargestdeviation.ThisadaptabilitydoesnotproduceanimportantreductionofthewavepacketsizebutcanstabilizethewavepacketmoreefficientlyascomparedtoQSD.
1.
Discussion
WehaveintroducedthesetofcontinuousunravelingswhichrecoversinmeanthemasterequationinLindbladformandpreservesthenormofthestatevector.Thequantumstatediffusionunravelingisamemberofthisset,beingthesimplestwhichpreservesthesameinvariancepropertiesunderunitarytransformationsasthedensitymatrix.Wehaveseenthateachsingleunravelingcanbespecifiedverysimplybythechoiceofthenoisecorrelationsthusprovidinganaturalclassification.Fortheoreticalpurposes,itisusefultoworkwiththefullsetofcontinuousunravelingssinceitallowsonetostudyhowquantitieswhichdependonthechoiceoftheunravelingaresensitivetothischoice.
Asafirstapplication,wehavestudiedthelocalizationpropertieswhenonlyasingleLindbladoperatorispresent.Inthecaseofahermitianoperator,thehighestlocalizationrateoftherealnoiseunravelingaswellastheabsenceoflocalizationoftheimaginarynoiseunravelinghavebeenrecoveredandexplainedinaconsistentway.Foranonhermitianoperator,namelytheannihilationoperator,anewtimedependentunravelinghasbeenintroduced.Itisshownanalyticallythatthisunravelingprovidesthehighestlocalizationrateforsqueezedstatesandnumericallythatthispropertyisalsovalidformorecomplexquantumstates.Thisunravelingmaximizesthelocalizationbycontinuouslyadjustingthephasenoiseaccordingtotheshapeofthewavepacket.Thisstudyprovidesabetterunderstandingofthelocalization.Forinstance,theQSDunravelingisknowntohavegoodlocalizationpropertiesduetoitsinvariancecorresponding,insomesense,toahomogeneousdistributionofnoise.Wehaveseenthatthelocalizationratecanbeincreasedbymaximizingthenormofthenoisecorrelationfactorandadjustingcontinuouslyitsphase,thislastconstraintleadingtotheintroductionofatimedependentunraveling.
Sincethenewunravelingincreaseslocalizationitisagoodcandidatefornumericalsimulationsofquantumtrajectoriesandforthesolutionofthemasterequation.AnumericalcomparisonofthewavepacketsizeandfluctuationsbetweenQSDandthenewunravelingshowsthatthenewunravelingperformsbetterthanQSDbystabilizingthesizeofthewavepacket.
Inconnectionwiththestudyofthequantum-classicaltransition,arecentworkbyBrunetal[27]hasshownthattheQuantumJumpunravelingtendstoacontinuousunraveling.Itcanbeeasilyseenthatthisunravelingisamemberofthesetintroducedinthepresentpaper.Wehaveshownthatforasimplequantumsystemsubjecttodissipationallmembersofthesetofcontinuousunravelingslocalizewithaminimalrategivenbythedissipationrate,makinglocalizationageneralpropertyvalidforallunravelingsinsteadofonlysomeparticularones.
17
Acknowledgments
WethankGernotAlber,NicolasGisin,IanPercival,R¨udigerSchackandWalterStrunzforstimulatingdiscussions.WeacknowledgefinancialsupportfromtheEUunderitsHumanCapitalandMobilityProgramme.AppendixA.
Propertiesofthenoisecorrelations
InthecaseofalinearcombinationoftwoWienerprocessN=2,thenoisetermdζisspecifiedbythetwocomplexnumbersα1andα2whichwewriteasα1=ρ1eiφ1andα2=ρ2eiφ2.Thenoisecorrelationfactorbecomes
c=
n2αn
2
ρ21+ρ2
UsingR=ρ2/ρ1andθ=2(φ2−φ1),thiscomplexnumbercanberewrittenas
c=e
2iφ11
+R2eiθ
18
[13]StrunzWTandPercivalICThesemiclassicallimitofquantumstatediffusion-aphasespace
approach,submittedtoJPhysA
[14]WisemanHMandMilburnGJ1993Phys.Rev.A471652
[15]DalibardJ,CastinYandMølmerK1992Phys.Rev.Lett.68580[16]GardinerCW,ParkinsASandZollerP1992Phys.Rev.A43[17]MølmerK,CastinYandDalibardJ1993J.Opt.Soc.Am.B10524[18]CastinYandMølmerK1995Phys.Rev.Lett.743772[19]NaraschewskiMandSchenzleA1995Zeit.Phys.D3379[20]MølmerKandCastinY1996QuantumSemicl.Opt.849[21]NielsenMA1996QuantumSemiclass.Opt.8237
[22]HollandM,MarksteinerS,MartePandZollerP1996Phys.Rev.Lett.763683[23]SteimleT,AlberGandPercivalIC1995J.Phys.A:Math.Gen.28L491[24]SchackR,BrunTAandPercivalIC1995J.Phys.A:Math.Gen.2801[25]SchackR,BrunTAandPercivalIC1996Phys.Rev.A532694
[26]SchackRandBrunTA1997ComputerPhysicsCommunications,acceptedforpublication.[27]BrunTA,GisinN,O’MahonyPFandRigoM1997Phys.Lett.A229267[28]GarrawayBandKnightPL1994Phys.Rev.A491266[29]GarrawayBandKnightPL1994Phys.Rev.A5028[30]GarrawayBandKnightPL1996Opt.Communic.123517
[31]RigoM,AlberG,Mota-FurtadoFandO’MahonyPF1997Phys.Rev.A551665[32]GisinNandPercivalIPPrivatecommunication
[33]GardinerCW1990HandbookofStochasticMethods(Springer-Verlag)[34]GisinN1990Helv.Phys.Act.63929
[35]RigoMandGisinN1996QuantumSemiclass.Opt.8255[36]Mu˜noz-TapiaR1993Am.J.Phys.611005
[37]HazegawaHandEzawaH1980Progr.Theo.Phys.Suppl.6941[38]SpillerTPandRalphJF1994Phys.Lett.A194235[39]GisinNandRigoM1995J.Phys.A:Math.Gen.287375
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- ryyc.cn 版权所有 湘ICP备2023022495号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务