您好,欢迎来到锐游网。
搜索
您的当前位置:首页英语论文翻译

英语论文翻译

来源:锐游网
电磁波和声波的传播、弦和膜的振动等诸多物理现象, 其控制方程均可用波动方程[ 1] 来表述. 求解波动方程所采用的数值方法涵盖了有限差分法、有限元法、谱单元法等常用的计算方法[ 224] . 然而这些方法的精度和效率往往受到求解时所划分网格的数量和质量的影响, 尤其是复杂求解域或高维问题. 随后出现的边界元方法[ 5] 因其计算量小、精度高、对复杂形状边界的适应性较强等优点而被广泛应用, 然而边界元法仍需要在边界上划分网格, 求解边界积分方程, 这种积分计算由于存在奇点而十分繁琐, 而且所耗用的时间与稠密型线性代数方程组的求解时间相当.

无网格法[ 6] 可以克服传统数值分析方法对网格的依赖性, 彻底或部分消除网格, 抛开网格的初始划分和网格重构, 具有形式简单、易于实施、计算精度高等优点, 代表性的无网格方法有无单元伽辽金法、光滑粒子动力学方法、杂交边界点方法、径向基函数( RBF) 法等. 径向基函数配点法作为一种纯无网格方法, 在求解椭圆型偏微分方程、流体力学中的稳态解和波动方程的频域解( 亥姆霍兹方程) 等方面[ 729] 都得到了广泛的应用, 也有学者将该方法推广到了抛物型和双曲型偏微分方程以及瞬态问题和时域问题的求解[ 10212] . 本研究尝试将径向基函数配点法和Crank2Nicolson 方法结合, 用于求解二阶时域波动方程, 给出了求解的思路和实施方案, 通过数值算例验证了该方法可以用于波动方程的求解.

Many physical phenomena of electromagnetic waves and sound waves, vibration of strings and membranes, the control equations are available to be with the wave equation [1]. To describe the numerical methods for solving the wave equation used in covering the finite difference method, finite element method, the spectral element methodcommonly used in the calculation [224] . However, the accuracy and efficiency of these methods is often subject to quantity and quality of the grid when solving meshing, especially in the complex solution domain or high dimension problems. Followed by the boundary element method [5] because of the small amount of calculation, high accuracy, strong adaptability to complicated boundary shapeof being widely used, however, the boundary element method is still on the boundary mesh, solve the boundary integral equation, this integral calculation due to odd point is very tedious, and time spent with dense linear algebra equations of computation time is considerable.

Meshless method [6] can overcome the traditional numerical analysis method dependent on the grid, completely or partially eliminate the grid, set aside the initial grid division and remeshing, with the form of simple, easy to implement, calculation accuracymeshless methods advantages, representative with element free Galerkin method, smoothed particle hydrodynamics method, the hybrid boundary node method, radial basis function (RBF) method. radial basis function collocation method as a kind of pure meshless methodfor solving elliptic partial differential equations, the steady-state solution in the fluid mechanics and wave equation frequency domain (Helmholtz equation) [729] have been widely used, but also scholars of theextended to the parabolic and hyperbolic partial differential equations as well as transient and time-domain problem solving [10212] this study attempts to radial basis function collocation method and Crank2Nicolson method for solving the second-order time-domain wave equation,solving thinking and implementation of programs, this method can be used for the solution of the wave equation by a numerical example.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- ryyc.cn 版权所有 湘ICP备2023022495号-3

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务