您好,欢迎来到锐游网。
搜索
您的当前位置:首页第五节 指数与指数函数

第五节 指数与指数函数

来源:锐游网


第五节 指数与指数函数

题号 答案 1 1

2 3 1

4 5 6 1-27-

1.(0.027)3--7+292-(2-1)0=( )



A.45 B.40 C.-45 D.-40

127-32511052解析:原式=1 000-7+92-1=-49+-1=-45.

33故选C.

答案:C

2.已知全集U=R,A={x|y=2x-1},则∁UA=( ) A.[0,+∞) B.(-∞,0) C.(0,+∞) D.(-∞,0]

解析:集合A即函数y=2x-1的定义域,由2x-1≥0,求得x≥0,即A=[0,+∞),故∁UA=(-∞,0),故选B.

答案:B

1

3.(2013·北京东城区模拟)在同一坐标系中,函数y=2与y=2



x

x

的图象之间的关系是( )

A.关于y轴对称 B.关于x轴对称 C.关于原点对称

D.关于直线y=x对称

1x

解析:因为y=2=2-x,所以它与函数y=2x的图象关于y轴



对称.故选A.

答案:A

4.函数y=ax-a(a>0,且a≠1)的图象可能是( )

答案:C

5.已知函数y=2x-ax(a≠2)是奇函数,则函数y=logax是( ) A.增函数 B.减函数 C.常数函数 D.增函数或减函数

解析:因为函数y=2x-ax(a≠2)是奇函数,所以必有2x-ax=-(2-x-a-x),

1

化简可得(2-a)1-2xax=0,因为a≠2,所以2x-ax≠0,所以

x

x

1

必有1-xx=0,

2a

1

解得a=,故y=logax=log1x是减函数.故选B.

2

2答案:B

6.设函数f(x)=a-|x|(a>0且a≠1),f(2)=4,则( ) A.f(-2)>f(-1)

B.f(-1)>f(-2) C.f(1)>f(2) D.f(-2)>f(2)

1-|x|1

解析:因为f(2)=4,即a=4,所以a=,所以f(x)=2=

2

-2

2|x|,所以f(-2)>f(-1),故选A.

答案:A

7.已知函数f(x)=ax+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(1)+f(2)的值是________.

1

解析:∵f(1)=a+=3,f(0)=2,

af(2)=a2+a-2=(a+a-1)2-2=7, ∴f(1)+f(0)+f(2)=12. 答案:12

131311

8.若x>0,则(2x4+32)(2x4-32)-4x-(x-x2)=______.

2答案:-23

9.(2014·徐州模拟)已知过点O的直线与函数y=3x的图象交于A,B两点,点A在线段OB上,过A作y轴的平行线交函数y=9x的图象于C点,当BC平行于x轴时,点A的横坐标是________.

解析:设点A、B的横坐标分别为x1,x2,则点A、B的纵坐标为3x1,3x2,

3x13x2∵A、B在过点O的直线上,∴=.

x1x2∵点C(x1,9x1),且BC∥x轴, ∴9x1=3x2,∴2x1=x2.

3x13x2将2x1=x2代入=,得x1=log32.

x1x2答案:log32

ax-1

10.已知函数f(x)=x(a>1).

a+1(1)判断函数的奇偶性; (2)求该函数的值域;

(3)证明:f(x)是R上的增函数.

a-x-11-ax

解析:(1)解析:∵定义域为R,且f(-x)=-x==-f(x),

a+11+ax∴f(x)是奇函数.

ax+1-22

(2)解析:f(x)=x=1-x,

a+1a+1

2

∵a+1>1,∴0a+1

x

ax1-1ax2-1

(3)证明:设x1,x2∈R且x1ax1+1ax2+12ax1-2ax2

<0(分母大于零,且ax1(ax1+1)(ax2+1)

∴f(x)是R上的增函数.

11.已知函数f(x)=a·2x+b·3x,其中常数a,b满足ab≠0. (1)若ab>0,判断函数f(x)的单调性; (2)若ab<0,求f(x+1)>f(x)时x的取值范围. 解析:(1)当a>0,b>0时,任意x1,x2∈R,x10⇒a(2x1-2x2)<0, 3x1<3x2,b>0⇒b(3x1-3x2)<0,

∴f(x1)-f(x2)<0,函数f(x)在R上是增函数.

当a<0,b<0时,同理,函数f(x)在R上是减函数. (2)f(x+1)-f(x)=a·2x+2b·3x>0.

3xaa

当a<0,b>0时,2>-,则x>log1.5-2b;

2b3xaa

当a>0,b<0时,2<-,则x2b

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- ryyc.cn 版权所有 湘ICP备2023022495号-3

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务