实验报告—序列相关性的分析与补救
性分析
名称:1960年至1992年居民的消费水平
与可支配收入关系
一. 实验目的:
掌握序列相关性的检验及处理方法
二. 实验内容:
1. 理论模型的设定: Y=β0+ β1X+μ 2.样本数据的收集:
年份 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
消费 Y 1432.6 1461.5 1533.8 1596.6 1692.3 1799.1 1902 1958.6 2070.2 2147.5 2197.8 2279.5 2415.9 可支配收入 X 1569.2 1619.4 1697.5 1759.3 1885.8 2003.9 2110.6 2202.3 2302.1 2377.2 2469 2568.3 2685.7 年份 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 消费 Y 2829.8 2951.6 3020.2 3009.7 3046.4 3081.5 3240.6 3407.6 3566.5 3708.7 3822.3 3972.7 4064.6 可支配收入 X 3115.4 3276 3365.5 3385.7 3464.9 3495.6 3562.8 3855.4 3972 4101 4168.2 4332.1 4416.8 1
1973 2532.6 2875.2 1990 4132.2 4498.2 1974 2514.7 2854.2 1991 4105.8 4500 1975 2570 2903.6 1992 4219.8 4626.7 1976
2714.3
3017.6 资料来源:《中国统计年鉴》1993,中国统计出版社
3.模型参数的估计:
通过OLS法建立消费与可支配收入之间的方程
EViews软件估计结果如表1.2
表1.2
Dependent Variable: Y Method: Least Squares Date: 12/12/10 Time: 19:03 Sample: 1960 1992 Included observations: 33
Variable Coefficient Std. Error t-Statistic Prob. C -52.91844 24.08305 -2.197332 0.0356 X
0.917932
0.007526
121.9632
0.0000
R-squared
0.997920 Mean dependent var 2757.545 Adjusted R-squared 0.997853 S.D. dependent var 867.7769 S.E. of regression 40.20706 Akaike info criterion 10.28465 Sum squared resid 50114.84 Schwarz criterion 10.37535 Log likelihood -167.6968 F-statistic 14875.01 Durbin-Watson stat
0.788463 Prob(F-statistic)
0.000000
Ŷ=-52.91844+0.917329 X
(-2.197) (121.963)
R²=0.9979 R²=0.9978 SE=40.2071 D.W.=0.7885
4.模型的检验(即进行序列相关性检验)
(1)做出残差项与时间的关系图如下:
图1
2
从残差项et与时间t之间的关系图可以大致判断随机干扰项存在负序列相关性
对其滞后一期的残差项做散点图,如下 图2
3
由残差项et及滞后一期的残差项et1的关系图可以看出,随机干扰项存在正序列相关性。
再由表1.2中的D.W.检验结果可知,在5%的显著性水平下,n=33,k=2(包括常数项),查表得dl=1.38,
du=1.51,由
于D.W.=0.788463<dl,故随机干扰项存在正序列相关性。
(2),运用拉格朗日乘数检验,EViews
3
表1.3
F-statistic Obs*R-squared
Test Equation:
Dependent Variable: RESID Method: Least Squares
软件估计2阶滞后残差项结果如表1.
7.839487 Probability 11.58053 Probability
0.001898 0.003057
Breusch-Godfrey Serial Correlation LM Test: 4
Date: 12/12/10 Time: 19:39 Variable C X RESID(-1) RESID(-2) R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -2.184127 0.000914 0.512506 0.130987
Std. Error 20.10792 0.006292 0.184414 0.186567
t-Statistic -0.108620 0.145195 2.779105 0.702089
Prob. 0.9143 0.8856 0.0095 0.4882 39.57384 9.973659 10.15505 5.226324 0.005236
0.350925 Mean dependent var -2.59E-13 0.283779 S.D. dependent var 33.49127 Akaike info criterion 32528.29 Schwarz criterion -160.5654 F-statistic 1.931951 Prob(F-statistic)
由此表可知,含2阶滞后残差项的辅助回归为 e=-2.184127+0.000914x+0.512506e
tt1
+0.130987et2 (-0.109) (0.145) (2.779) (0.702) R²=0.350925
于是,LM=31*0.350925=10.878675,该值大于显著水平为5%,自由度为2的x分布的临界值x0.05(2)=5.991,由此判断原模型存在2阶序列相关性,但由于et2的参数t检验不通过,即参数不显著,说明不存在2阶序列相关性。 225.运用广义差分法进行自相关的处理
(1)采用科奥-迭代法估计ρ
在EViews软件包下,1阶广义差分的估计结果如下表1.4 表1.4
Dependent Variable: Y Method: Least Squares Date: 12/12/10 Time: 19:50 Sample(adjusted): 1961 1992
Included observations: 32 after adjusting endpoints Convergence achieved after 4 iterations
Variable C
Coefficient -72.65161
Std. Error 51.16709
t-Statistic -1.419889
Prob. 0.1663
5
X AR(1) R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots 0.917932 0.581683 0.015163 0.146190 60.89270 3.978965 0.0000 0.0004 847.8975 9.898115 10.03553 10444.12 0.000000 0.998614 Mean dependent var 2798.950 0.998518 S.D. dependent var 32.64164 Akaike info criterion 30898.82 Schwarz criterion -155.3698 F-statistic 2.179329 Prob(F-statistic) .58 与此估计结果可得:
Ŷ=72.65161+0.917932*X+0.581683*AR(1) (-1.4199) (60.8627) (3.97897)
R2=0.998614 R²=0.998518 D.W.=2.179329
其中,AR(1)前的参数值即为随机干扰项的1阶序列相关系数。在5%的显著性水平下,du=1.5 Dependent Variable: Y Method: Least Squares Date: 12/12/10 Time: 19:53 Sample(adjusted): 1961 1992 Included observations: 32 after adjusting endpoints Variable C Y(-1) Coefficient -15.75714 0.647153 Std. Error 23.03522 0.144717 t-Statistic -0.684045 4.471845 Prob. 0.4996 0.0001 6 X 0.738081 0.100705 7.329135 0.0000 X(-1) -0.409750 0.147759 -2.773091 0.0098 R-squared 0.998766 Mean dependent var 2798.950 Adjusted R-squared 0.998634 S.D. dependent var 847.8975 S.E. of regression 31.34150 Akaike info criterion 9.844232 Sum squared resid 27504.11 Schwarz criterion 10.02745 Log likelihood -153.5077 F-statistic 7553.554 Durbin-Watson stat 1.894506 Prob(F-statistic) 0.000000 由上表可得出: Ŷt=-15.75714+0.647153*Yt1+0.738081*Xt-0.409750*Xt1(-0.684) (4.472) (7.329) (-2.773) R2=0.998766 R²=0.998634 D.W.=1.894506 第二步,作差分变换 Y*t=Yt+0.647153*Yt1 X*t=Xt-0.409750*Xt1 则,Y*t关于X*t的OLS估计结果如表1.5所示: 表1.5 Dependent Variable: Y1 Method: Least Squares Date: 12/12/10 Time: 19:59 Sample: 1960 1992 Included observations: 33 Variable Coefficient Std. Error t-Statistic Prob. C -53.94172 24.08600 -2.239547 0.0324 X1 0.917932 0.007526 121.9632 0.0000 R-squared 0.997920 Mean dependent var 2756.898 Adjusted R-squared 0.997853 S.D. dependent var 867.7769 S.E. of regression 40.20706 Akaike info criterion 10.28465 Sum squared resid 50114.84 Schwarz criterion 10.37535 Log likelihood -167.6968 F-statistic 14875.01 Durbin-Watson stat 1.788463 Prob(F-statistic) 0.000000 所以, 7 Ŷ*=-53.94172+0.917932 X*tt (-2.2395) (121.96) R2=0.997920 R²=0.9978853 D.W.=1.788463 在5%的显著性水平下,D.W.> du=1.5,已不存在自相关。 为了与OLS估计的原模型进行比较,计算β0: β0=β*0/(1-ρ1)=-53.94172/(1-0.647153)=-152.876 于是模型可表示为: Ŷt=-152.876+0.917932 Xt 可见,仅是截距项有差距,X前的参数没有差别 8 因篇幅问题不能全部显示,请点此查看更多更全内容