Z scaling, fractality, and principles of relativity in the interactions of hadrons and nucl
ˇz-TH-06/2000Zscaling,fractality,ofhadronsandprinciplesandnucleiofatrelativityhighenergies
intheinteractions
I.Zborovsk´y1
NuclearPhysicsInstitute,AcademyofSciencesoftheReˇ
ˇCzechRepublic,z,CzechRepublicAbstract
Theformationlengthofparticlesproducedintherelativisticcollisionsofhadronsand
nucleihasrelevancetofundamentalprinciplesofphysicsatsmallinteractiondistances.Therelationisexpressedbyazscalingobservedinthedifferentialcrosssectionsfortheinclusivereactionsathighenergies.Thescalingvariablereflectsthelengthoftheelementaryparticletrajectoryintermsofafractalmeasure.Characterizingthefractalapproach,wedemonstratetherelativityprinciplesinspacewithbrokenisotropy.Wederiverelativistictransformationsaccountingforasymmetryofspace-timeexpressedbydifferentanomalousfractaldimensionsoftheinteractingobjects.
1Introduction
Observationofparticleswithlargetransversemomentaproducedinhighenergycollisionsofhadronsandnucleiprovidesuniqueinformationaboutthepropertiesofquarkandgluoninteractions.Asfollowsfromnumerousstudiesinrelativisticphysics(seee.g.[1,2,3]),acommonfeatureoftheprocessesisthelocalcharacterofthehadroninteractions.Thisleadstoaconclusionaboutdimensionlessconstituentsparticipatinginthecollisions.Factthattheinteractionislocalmanifestsnaturallyinascale-invarianceoftheinteractioncrosssections.Theinvarianceisaspecialcaseofthe‘automodelity’principlewhichisanexpressionofself-similarity[4,5].Thispropertyenablestopredictandstudyvariousphenomenologicalregularitiesreflectingthepoint-likenatureoftheunderlyinginteractions.Aspecialroleplaythedeepinelasticprocesseswhichconfirmtheideaofhadronsascompositeextendedobjectswithinternaldegreesoffreedom.Inthecollisionswithnucleithestructurewasrevealedatthesub-nucleonlevel.
Theideaswereimplementedintotheformulationofthezscaling[6]fordescriptionoftheinclusiveparticleproductionathighenergies.Theconceptofself-similarityoftheinteractionswascomplementedbyconsiderationsaboutthefractalcharacteroftheobjectsundergoingthecollisions[7].Thegoalofthepaperistofocusonthegeneralpremissesofthezscalinginviewoffundamentalprinciplesofphysicsatsmallinteractiondistances.Itconcernsthescaledependenceofphysicallawsgraduallyemerginginvariousexperimentalandtheoret-icalinvestigations.Suchextensionofphysicsisintrinsicallylinkedtotheevolutionoftheconceptofspace-time.Ithasbeenproposed[8,9]thatthetopologyofspace-timebecomescomplicatedwithdecreasingscales.Intheextremecase,whenapproachingthePlankscale,thestructureofspace-timeissupposedtobeextremelyirregular(foam-like).Thestructureischaracterizedbyexplicitlyscaledependentmetricpotentials.Askingquestionsaboutthemetricsleadsonetoquestiontherelativity.Thereexistssuggestions[10]thattheconven-tionalspecial-relativisticrelationbetweenmomentumandenergymightbemodifiedreflecting‘recoil’backgroundmetricchangesduringthehighenergyinteractions.Thisinturncoulddissolvesomecutoffproblemsintheultra-relativisticregion.
Thebasicassumptiontackledinthepaperistheprincipleofrelativitywhich,besidesmotion,appliesalsotothelawsofscale.Thereisonemathematicalconceptexpressingtheself-similarityandcomplyingwiththescalerelativisticapproach,so-calledfractals[11].Thegeometricalobjectsmodeltheinternalpartonstructureofhadronsandnucleirevealedintheirinteractionsathighenergies.ThedescriptionofthepartoninteractionsasexpressedbytheconstructionofthezscalingispresentedinSec.II.SomeaspectsofthefractalityinviewofthescalingvariablearediscussedinSec.III.InSec.IV.,wepresentaformalismresultingfromapplicationoftherelativityprinciplestothespacewithbrokenisotropywhichisacharacteristicfeatureofamorefundamentalconceptoffractalspace-time.Oneoftheconsequencesoftheapproachisadispersionlawconnectingtheenergyandmomentumofaparticlehavingimplicationstothenon-standardrelationsofthequantitiestotheparticle’svelocity.InSec.V.,weapplytheresultstothekinematicvariablesdeterminedbythestartingassumptionsinthedefinitionofthescalingvariablez.Asaresultweobtaintherelationbetweenthecoefficientexpressingthespace-timeanisotropyinducedintheinteractionandtheratiooftheanomalous(fractal)dimensionsoftheinteractingfractalobjects.
2
2Zscalingandconstituentinteractions
Weconsiderthehighenergycollisionsofhadronsandnucleiasanensembleofindivid-ualinteractionsoftheirconstituents.TheconstituentscanberegardedaspartonsinthepartonmodelorquarksandgluonswhicharebuildingblocksinthetheoryofQCD.Thepresentedapproachissubstantiallybasedonapremiseaboutfractalcharacterconcerningtheparton(quarkandgluon)contentofthecompositestructuresinvolved.Theinteractionsoftheconstituentsarelocalrelativetotheresolutionwhichisafunctionofthekinematicalchar-acteristicsoftheparticlesproducedinthecollisions.Thekinematicalvariablescharacterizetheresolutionintermsoftheunderlyingprocesses.Theyaredeterminedinawayaccountingformaximalrelativenumberofinitialpartonconfigurationswhichcanleadtotheproduc-tionoftheobservedsecondaries.Inthecaseofthesingle-particleinclusiveproduction,theconstructionwaspresentedinRef.[7].Itreflectstheprinciplesoflocality,self-similarityandfractalitywhichgovernthecollisionsofhadronsandnucleiathighenergies.
Thelocalityprincipleiswidelyacceptedandfollowsfromnumerousexperimentalandtheoreticalinvestigations.Inaccordancewiththisprinciple,ithasbeensuggested[12]thatgrossfeaturesofthesingle-inclusiveparticledistributionsforthereaction
M1+M2→m1+X
(1)
canbedescribedintermsofthecorrespondingkinematicalcharacteristicsoftheinteraction
(x1M1)+(x2M2)→m1+(x1M1+x2M2+m2).
(2)
TheM1andM2aremassesofthecollidinghadrons(ornuclei)andm1isthemassoftheinclusiveparticle.Theparameterm2isusedinconnectionwithinternalconservationlaws(forisospin,baryonnumber,andstrangeness).Thex1andx2arethescale-invariantfractionsoftheincomingfour-momentaP1andP2ofthecollidingobjects.Consideringtheprocess(2)asalocalcollisionoftheconstituents,wehaveexploitedthecoefficient
Ω(x1,x2)=m2(1−x1)δ1(1−x2)δ2
(3)
whereqisthefour-momentumoftheinclusiveparticlewiththemassm1.ThefractionsresultingfromtheserequirementswerepresentedinRef.[7].Theyhavetheform
x1=λ1+χ1,
3
x2=λ2+χ2,
asaquantityproportionaltothenumberofallinitialconstituentconfigurationswhichcanleadtotheproductionoftheinclusiveparticlem1.Heremisamassconstant(itstypicalvaluebeingthenucleonmass).Thecoefficientconnectsthekinematicalcharacteristicsoftheelementaryinteractionwithglobalparametersofthecollidinghadrons(ornuclei).Itreflectsthefractalcharacterofthestructuralobjectsrevealedbytheinteraction.Theparametersδ1andδ2relatetotheiranomalous(fractal)dimensions.
Themomentumfractionsx1andx2aredeterminedinthewaytomaximizethevalueofΩ,accountingsimultaneouslyfortheminimumrecoilmasshypothesis[12]intheconstituentinteraction.Thehypothesisstatesthattheinteractionisabinarycollisionsubjectedtothecondition
(x1P1+x2P2−q)2=(x1M1+x2M2+m2)2,(4)
(5)
where
λ1=
(P2q)+M2m2
(P1P2)−M1M2
.(6)
Theχicanbeexpressedasfollows
where
χ1=
µ22
1)
1=αλ
(1−λλ2
2
λ1λ2+λ0,
µ22+ω2
2+ω2,
(7)
(1−λ2)
α
λ2
2α
λ.5(m20=
02−m2
1)
particlem1.Therelativeuncertaintyinthedeterminationoftheunderlyingsubprocesscanbereducedtosmallersubsystems,ifthemomentumfractionsarenottoolarge.Specially,fortheinteractionsinvolvingonlysinglenucleons,oneusuallyintroducesthemomentumfractionsoftheinteractingnucleiexpressedinunitsofthenucleonmass,x¯i=Aixi.Inthesinglenucleoninteractionregime,therelativeuncertaintycanbeapproximatedasfollows
ε(x1,x2)≡(1−x¯1/A1)A1(1−x¯2/A2)A2∼(1−x¯1)(1−x¯2).
(13)
Ontheotherhand,thefactorizationdoesnotapplyfortheprocessesinwhichx¯i>1.They
areknownascumulativeprocesses[4,12,13]andcorrespondtothejoiningofpartonsfromdifferentnucleonsofnuclei.Thisregionisinterestingfromthepointofviewoffractalityatsmallscales.Herewefocusonsmallinteractiondistancesundertheconditionthatsimultane-ouslylargeamountofenergyisdepositedinit.Inthesingle-particleinclusivereactions,thecumulativeprocesscorrespondstolargerspatialresolutionsdeterminedbythedimensionsoftheinteractionregionoftheconstituentcollision.Theresolutionincreaseswiththemomen-tumtransferintheunderlyingsubprocessesandisinfluencedbythetypesofthecollidingobjects.WediscussthisconnectioninAppendixAinmoredetail.
Thesecondbasicingredientofthezscalingschemeistheself-similarityprinciple.Inhighenergyphysics,theprincipleisreflectedbythepropertythattheunderlyingproductionprocessesaresimilar.Itresultsindroppingofcertainquantitiesorparametersoutofthephysicalpictureoftheinteractions.Theparticleproductionfromself-similarprocessescanbedescribedintermsofindependentvariables.Constructionofthevariablesdependsonthetypeoftheinclusivereaction.Forsingle-particleinclusiveproductionathighenergies,thescalingfunction[7]
H(z)≡
ψ(z)
ρtotσinel
z∂λ1
+
z∂λ2
−1
E
d3σ
m2ρ(s)
1/2
,
ε(x1,x2)≡(1−x1)A1(1−x2)A2.
(16)
Thefinitepartz0ischaracterizedbythetransversekineticenergy
/2
sˆ⊥kin=sˆλ+sˆ1χ−m1−(M1x1+M2x2+m2)
1/2
(17)
5
ofthesubprocess(2).Itincludestheterms
1/2sˆλ
=
representingthetransverseenergyoftheinclusiveparticleanditsrecoil,respectively.The
factorρ(s)≡dn/dη|η=0istheaveragemultiplicitydensityofthechargedparticlesproducedinthecentralregionofthecorrespondingnucleon-nucleoninteraction.Themultiplicitydensityρ(s)dependsonthetotalcenter-of-massenergyandincludesthedynamicalingredientofthescaling.Thedivergentpartofthevariablezisgivenasaδpoweroftheresolutionε−1.Theparameterδrepresentsanomalous(fractal)dimensionofthetrajectoriesfollowedbytheinclusiveparticlesproducedinthehighenergycollisionsofhadronsandnuclei.Weconsidertheanomalousdimensionδtobeacharacteristicreflectingtheintimatestructureofparticlemotionatsmallscalesandthusrelatedtothefractalpropertiesofspace-time.
Thecomparisonwithexperimentaldatashowsthatthezscalingrepresentsregularityvalidinnucleon-nucleonandproton-nucleuscollisionsinawiderangeofthecenter-of-massenergy,thedetectionangleθandtheatomicnumberA.Allparametersinthezscalingschemearegivenintermsofthemeasurablequantitiesexceptone,whichistheparameterδ.Restrictiononthisparameterisgivenbyexperimentaldata.Westressthatenergyandangularindependenceofthezscalingcanbeachievedsimultaneouslybythesamevalueofδ.Wehaveobtainedδ∼0.8[7]fortheinclusiveproductionofchargedparticles(pions).TheA-universalityofthezscalingwasdemonstratedwiththesamevalueaswell.Thesimultaneousenergyandangularindependenceofzscalingfortheinclusiveproductionsofjetsimplies[14]δ∼1.Itshouldbeemphasizedthattheproductionofjetsunderliethehardprocesseswithlargevaluesofz.Inthisregionthescalingfunctionmanifestaclearpowerlawψ(z)∼z−β.Similarbehaviourisseenfortheinclusiveproductionofsinglehadrons[7]inthetailofthespectrum.Thepowerlawofthescalingfunctionstressesthefractalattributesoftheprocesseswhicharepreferabletostudymainlyintheregionoflargez.Incontrasttothis,thescalingfunctionhasdifferentshapeforsmallvaluesofz.Itcorrespondstomediumandlowtransversemomentaq⊥.Theunderlyingpartoninteractionshavecharacterofthesoftprocesseshere.Thesoftinteractionsaredominantmainlyinbothfragmentationregions.Inthissense,thesoftandhardregimeoftheparticleproductionisdistinguishedbydifferentbehaviourofthescalingfunction.Thequantitativevaluesofthescalingfunctionshouldbereproducedusingatheoryofhadronicinteractions,whichwethrustisQCD.HoweverdifficultiesinapplyingtheQCDmethodsinthenon-perturbativeregimeandthelackoffundamentalunderstandingofhadronizationeveninanperturbativeapproximation,limitsustothephenomenology.Inourdescriptionoftheinclusivereactions,weaimatgraspingmainprinciplesthatinfluencetheparticleproductionatsmallscales.Weunderstandtheexistenceofthezscalingitselfasconfirmationofthehadroninteractionlocality,self-similarity,andfractalitywhichpossessanuniversalcharacter.
(χ1P1+χ2P2)2,(18)
3Fractalityatsmalldistances
Besidestheself-similarityprinciple,theconstructionofthezscalingregardsalsothefrac-talityofthehadroninteractions.Thefractalpropertiesaremanifestedespeciallyatsmallinteractiondistances.Inthisregion,physicsbecomesscaledependentandpossessesitstypi-calpropertywhichisthedivergenceofelementaryquantitiessuchastheself-energy,charges
6
andsoon.Inthehighenergycollisions,oneoftherelevantphysicalquantitiesisthefor-mationlengthoftheproducedparticlesdivergentatsmallscales.Accordingtothezscalinghypothesis,theformationlengthisproportionaltothescalingvariablezandtheproductioncrosssectionsdependonitinanuniversal,energyindependentway[14,15,16].
Universalityplaysthecrucialrole.Thereexistsuggestions[17]thatuniversalpropertiesofmatterareattributedtothestructureofspace-timeitself.Inthetheoryofrelativitybothspecialandgeneral,thisconcernstheLorenztransformationandthecurvatureofthetrajec-toriesreflectingfundamentalprinciplesofphysics.Freeparticlesaremovingalongsmoothgeodesicallines,characteristicfortheclassical(curved)space-time.Thesituationbecomesdifferentatscalestypicalforthequantumworldoftheelementaryparticles.Thecommonpropertyistheunpredictabilityofmotionatsmalldistances.Inthisregiontheparticlesfollowirregulartrajectorieswhichbecomenon-differentiable.Thegeometryofthelinesofmotioncanbeattributedtothepropertiesoffractalswhichareextremelyirregularobjectsfragmentedatallscales.Asanexampleonecanmentionthequantum-mechanicalpathofaparticleinthesenseofFeynmantrajectories[18].
Oneofthemaincharacteristicsoffractalsisthedivergenceoftheirmeasuresintermsoftheincreasingresolution.WeillustratethispropertybythevonKochcurve[19]whichischaracterizedbythefractalmeasure
zε=z0·εDT−D
(19)
representingitslength.Thelengthofthecurveisafunctionoftheresolutionε−1(seeFig.1.).Relation(19)istypicalforvariousfractalsandstateshowthefractalmeasuredependsontheresolution.FractalobjectsarecharacterizedbythetopologicaldimensionsDTwhichareintegerquantitiesandbythefractaldimensionsDacquiringgenerallynon-integervalues.Theanomalousdimensionofafractal
δ≡D−DT>0(20)ispositive.Itisequivalenttopowerlawdivergenceofthemeasurezεwiththeincreasing
resolution.VonKochcurveilluminatestheprocessof‘fractalization’.Thecurvehasthelength
zn=z0(p/q)n,p=4,q=3(21)inthen-thapproximation.Itiscomposedofpnsegments,eachofthelengthz0q−n.The
measurecanberewrittentotheform
zn=z0(q−n)1−lnp/lnq,
(22)
whichgivestherelation(19)withDT=1,D=lnp/lnq,andε=q−n.TheanomalousdimensionofthevonKochcurveδispositiveandthus,withincreasingresolution,itslengthtendstoinfinity.
Theseconceptsfindapplicationintheworldofphysicsatsmalldistances.Thefractalcharacterintheinitialstatereflectstheparton(quarkandgluon)compositionofhadronsandnucleiandrevealsitselfwithalargerresolutionathighenergies.Accordingtothispicture,thecollisionsoftheconstituentstakeplaceonthefractalbackgroundoftheinteractingobjects.Theessentialassumptionconcerningtheinterpretationoftheideasrepresentedbythezscalinghypothesisisexpressedinthefollowingstatement:Presenceoftheinteractingfractalobjectsdeformsthestructureofsurroundingspaceatsmalldistances.Asaconsequence,space-time
7
becomeslocallynon-differentiable,fractalwithgeodesicallinesacquiringanextremelyirregularscale-dependentshape.Thenotionoffractalspace-timewasusedinRefs.[17,20]anditspropertieshavebeenstudiedbyothers[22].Distortionofthesurroundingspace-timeintheinteractionswithrecoilinduceanon-trivialoff-diagonaltermsinthemetricchangingtherelationsbetweenenergyandmomentum[10].Theissuesconcernmodellingofvariousaspectsofquantumfluctuationswhichinfluenceparticleproductionandtheirinteractionsatsmallscales.
Thesecondarypartons,producedinfractalspace-timefollowerraticandscale-dependentgeodesicsstartingfromtheregionstheyhavebeencreated.Duringtheinitialphaseofthemotion,onecanimaginethetrajectoriesasfractalcurvessimilartothevonKochcurvedepictedinFig.1.Formationofaparticlefromthebarepartonrealizesalongthetrajectorycharacterizedbyitslength.Theproducedparton,ancestorofthesecondaryparticle,interactswiththevacuumorthesurroundingmatterfieldacquiringsimultaneouslysometypeoftheparton‘coat’.Thenumberoftheenvelopingpartonsformingthecoatresultsinaneffectiveincreaseoftheancestor’sdimensionssimultaneouslychangingitsmass.Duringtheparticleformationprocess,thepathoftheleadingpartonbecomesgraduallysmootherincomparisontothatfollowingimmediatelytheinstantoftheconstituentinteraction.Inthefinalstageoftheprocess,therelativelengthoftheparticle’spathisnegligiblewithrespecttoitsvalueintheverybeginningofthemotion.Itisaconsequenceofthetransitionfromsmallscales,characterizedbyanextremelyirregularfractal-likecharacterofthetrajectory,toscaleslargerthan,say,thecorrespondingdeBroglielength.Thus,inthecollisionsofthestructuralobjectssuchashadronsornuclei,thelengthofthetrajectoryofaproducedparticlecanincreaseinfinitelywiththedecreasingscaleatwhichtheparticlewascreated.
Letuslookattheprobleminviewofthemodelsdescribingtheinteractionofthecon-stituentsasaparton-partoncollisionwithsubsequentformationofastringstretchedbetweenthetwopartsinthefinalstateoftheprocess(2).Followingthesamegeodesicaltrajectory,thestringisafractalobjectwiththescaledependentproperties.Inthispicture,thevalueofΩ(3)canbeconsideredasaquantityreflectingthetensionofthestring.Thestringtensioncoefficientischaracterizedbythedensityofthestraight-likesegmentsalongitslength.Forallresolutions,theproductofthecoefficientandthelengthofthestringzεrepresentsthefinitequantity
1/2sˆh=Ω·zε,(23)whichistheenergyofthestring.Theformofthetensioncoefficient,aspresentedbyEq.
(3),accountsfortheshapeofthestringdeformedinconsequenceofthefractalstructureofspace-time.Withtheincreasingresolution,thestringismoreandmorefragmentedandthedeformationsresultinthediminishingofitstension.Physically,thedeformationsofthestringcanbecausedbyfluctuationsoftheQCDvacuumdisturbedinpresenceoftheinteractingfractalobjectsatsmalldistances.Thestringtension
Ω∼εδ
(24)
isafunctionoftheresolutionε−1andischaracterizedbytheanomalous(fractal)dimensionδofthestring.Theresolutioncorrespondstoacharacteristicsizeofthespace-timeregionoftheinteractionanddependsonthemomentumfractionscarriedbytheinteractingconstituents.Inthedeterminationofthefractions,weconsideranoptimizationmethoddealingwiththefractaltrajectoriesofparticlesatanyscale.Theoptimaltrajectoryisdefinedbytheconditionthat,
8
fortheunderlyingcollisionoftheconstituents,thetensionofthefractal-likestring,stretchedoutbytheproducedparton,shouldbymaximal.Thisisequivalenttotheextremumoftheexpression(3)underthecondition(4).Themaximaltensionofthestringisthusgivenbytheminimalvalueoftheresolutionandcorrespondstothegeodesicswhichareinasense‘optimal’curves.
Theenergyofthestringconnectingthetwoobjectsinthefinalstateoftheprocess(2)isgivenbytheenergyofthecollidingconstituents.Thestringevolvesfurtherandsplitsintopieces.Theresultantnumberofthestringpiecesisproportionaltothenumberordensityofthefinalhadronsmeasuredinexperiment.Asknownfromvariousexperimentalandtheoret-icalstudiesconcerningthemultipleproduction,theproducedmultiplicityisproportionaltotheexcitationoftransversedegreesoffreedom.Therefore,thestringtransverseenergyisameasureofmultiplicity.Suchideasallowustointerprettheratio
sˆh≡sˆ⊥kin/ρ(s)
1/2
1/2
(25)
asaquantityproportionaltotheenergyofthestringpiece,whichdoesnotsplitalready,
butduringtheformationprocessconvertsintotheobservedsecondary.Thestringsplittingisself-similarinthesensethattheleadingpieceofthestringforgetsthestringhistoryanditsformationdoesnotdependonthenumberandbehaviourofotherpieces.Wewritetheenergyofthesinglepieceofthestringintheform(23).Thisisequivalenttothedefinitionofthevariablez≡zεasafractalmeasureproportionaltothelengthofthestringpiece,ortheformationlength,onwhichtheinclusiveparticleisformed.ThecorrespondingscalingfunctionH(z)reflectstheevolutionoftheformationprocessoftheinclusiveparticlealongitsfractal-liketrajectoryofthelengthz.WeaddherethatthereexistsalsocomplementaryinterpretationofthefactorΩ.AccordingtotheideaspresentedinRef.[7],Ωreflectstherelativenumberofallinitialconfigurationscontainingtheconstituentswhichcarrythemomentumfractionsx1andx2.Thenumberoftheconfigurationsinonecollidingobjectisgivenbythepowerlawcharacteristicforfractals.Infractaldynamicstheresolutionε−1isgivenbythemaximalnumberoftheinitialconfigurationswhichcanleadtotheproductionoftheparticlem1.Generally,thefractalapproachtothehighenergycollisionsofhadronsandnucleineedsmoreprofoundunderstanding.Itconcernsthedeformationofspace-timeatsmallscalesandattributesadditionalmeaningtothephysicalquantitiessuchasthemomentum,mass,energyorvelocity.Theymaybedefinedfromparametersofthefractalobjectsintermsofthefractalgeometry[17].Thisincludesextensionoftherelativityprinciplestotherelativityofscalesaswellastothemorecomprehensivescale-motionrelativisticconcepts.
4
Breakdownofthereflectioninvariance,thewayto-wardsscale-motionrelativity
GeneralsolutiontothetheoryofthespecialrelativityistheLorenztransformation.AsdemonstratedbyNottale,itcanbeobtainedunderminimalnumberofthreesuccessivecon-straints.Theyare(i)homogeneityofspace-timetranslatedasthelinearityofthetransfor-mation,(ii)thegroupstructuredefinedbytheinternalcompositionlawand(iii)isotropyofspace-timeexpressedasthereflectioninvariance.Letusconsidertherelativisticboostalongthex-axis.Thetransformationconcernsthevariablesxandtwhichrefernotonlytotheco-ordinateandtime,butalsotoanyquantitieshavingthemathematicalpropertiesconsidered.
9
Withoutanylossofgenerality,thelinearityofthetransformationcanbeexpressedintheform[21]
x′=γ(u)[x−ut],(26)
t′=γ(u)[A(u)t−B(u)x],
(27)
whereγ,A,andBarefunctionsofaparameteru.Theparameterrepresentsusualvelocity
(inunitsofthevelocityoflightc)inthemotionrelativityorthe‘scalevelocity’used,e.g.,intheconceptofthescalerelativityconcerningfractaldimensionsandfractalmeasures[17].Letuscomposethetransformationwiththesuccessiveone
x′′=γ(v′)[x′−v′t′],
(28)t′′=γ(v′)[A(v′)t′−B(v′)x′].
(29)
Theresultcanbewrittenintheform
x′′
=γ(u)γ(v′
)[1+B(u)v′
]
x−
u+A(u)v′
A(u)A(v′)+B(v′)u
x
.(31)
Theprincipleofrelativityisexpressedbytheconstraint(ii)whichisthegroupstructureofthetransformations.TheconditiontellsusthatEqs.(30)and(31)keepthesameformastheinitialonesintermsofthecomposedvelocity
v=
u+A(u)v′
(v′)B(u)+B(v′)
A(v)
=
Astructureswhicharefractalsofvariousfractaldimensions.ThecorrespondingLorenz-typescaletransformationsrelatethephysicalquantitiesexpressedintermsofonefractalstructurewiththequantitiesgivenwithrespecttotheotherone.Singlefractalstructureshavedifferentanomalousfractaldimensionsandplayanalogousroleastheinertialsystemsinthemotionrelativity.
Thesecondapproach,thescale-motionrelativity,preservesrelationsoftheenergyandmomentumtothevelocity.Thisappliesalsotosmallscaleswhereweassumespace-timetopossessanintrinsic(fractal-like)structure.Ourcompletechangeofviewofaparticleinthecorrespondingfractalspace-timeconcernsthedivergenceofthefractalmeasurerepresentingthelengthoftheparticle’strajectory.Thedegreeofrevelationofthestructuresdependsontheresolution.Foranygivenresolutionε−1,thenon-differentiablefractalspace-timeFcanbeapproximatedbyaRiemannspaceRεdefinedwithinadifferentiablegeometry.AspointedinRef.[17],thefamilyoftheRiemannspacesischaracterizedbymetrictensorscurvaturesofwhichareexpectedtofluctuateinachaoticway.Thefluctuationsincreasewiththedecreasingscale.Forthehighresolutionsε−1theapproximationstothefractalmeasuretendtoinfinity.Thecorrespondinglengthzεoftheparticletrajectorycanbearbitrarylarge.Thepropagationofaphysicalsignalalongsuchatrajectoryrequiresthevelocitiesexceedingthevalueofc,thespeedoflightinsymmetricspace-time.Therefore,theapplicationoftheprinciplesofrelativitytospace-timewithfractalpropertiesshouldbetreatedcarefully.Thesignificantcharacteristicsofthefractalspacesistheirfluctuatingandirregularnature.Thecorrespondinggeodesicallinesareextremelyunpredictableandfragmentedatanyscale.Asaconsequence,theisotropyofspace-timeisclearlybroken.Thisisconnectedwiththebreakingofthereflectioninvarianceattheinfinitesimallevel[22].Theapplicationoftheideastospace-timeatsmallscalesleedsustoleaveouttheconstraint(iii)ofthereflectioninvariance,whenconsideringtherelativistictransformations(26)and(27).Inthatcasetheunknownfunctionsγ,A,andBdonotobeytheparityrelationsresultingfromtheisotropyrequirement.LetuscombineEqs.(32),(33),and(34)intotheexpression
A
Itssolutionhastheform
A(u)=1+2au,
(37)
providedB(u)v′=B(v′)u.TheconditiongivesthefunctionB(u)=uwiththenormalizationconstantcincludedalreadyinthedefinitionofthevariableu.ThesolutionsatisfiesEq.(35)aswell.Theviolationofthespace-timereflectioninvarianceisexpressedbyanon-zerovalueofa.Intermsoftheparametera,thecomposedvelocity(32)canbewrittenasfollows
v=
v′+u+2auv′
u+A(u)v′
1+B(u)v′
.(36)
1+uv′
=γ(u)γ(v′)(1+uv′).
(39)
Itssolution,whichfora=0isgivenbythestandardγfactor,hastheform
γ(u)=
1
.
1+2au−u211
(40)
4.1Space-timeasymmetryin3+1dimensions
LetusdescribeapointPintwoCartesianreferencesystemsSandS′.WeassumethatthesystemsareorientedparalleltoeachotherandthatS′ismovingrelativetoSwiththevelocityuinthedirectionofthepositivex-axis.Wesupposethattheasymmetryexpressedbytheparameteraisparalleltothevelocityu.Therelativistictransformationsofthecoordinatesandtimearegivenby
x′1=γ(u)[x1−ut],
Theinverserelations
x1=γ(u)[(1+2au)x′1+ut′],
xi=x′i,
i=2,3,
(43)(44)
x′i=xi,
i=2,3,
(41)(42)
t′=γ(u)[(1+2au)t−ux1].
t=γ(u)[t′+ux′1]
areobtainedasthesolutionofEqs.(41)and(42)withrespecttotheunprimedvariables.Theycanbealsoderivedfromtheequationsbytheinterchangex↔x′,t↔t′,u↔u′,andbytherelation
u
u′=−
and
referenceframe.Inconnectionwiththetransformationformulae,itisconvenienttointroducethenotations
1
(49)γ=
222(1+a·u)−(1+a)u
g=
(1+a·u)γ−1
.1+2a·u
Accordingtothesubstitution,thereexistthesymmetryproperties
γ(u′)=(1+2a·u)γ(u),g(u′)=(1+2a·u)2g(u),
Exploitingtheproperties,theinverserelations
x=x′+u[γ(t′+a·x′)+gu·x′],t=t′+[γ−(t′+a·x′)+g−u·x′]
γ±(u′)=γ∓(u),g±(u′)=(1+2a·u)g∓(u).
(54)
(55)(56)
(57)(58)
withrespecttoEqs.(52)and(53)followimmediately.Weexpresstherelativistictransfor-mationsinamorecompactform
x′=D(u)x,(59)where
D(u)=
Theinversematrixreads
δij+guiuj−γuiaj−γui−g+uj+γ+aj1+γ+
.
(60)
D(u′)=D−1(u)=
δij+guiuj+γuiaj+γui
+g−uj+γ−aj1+γ−
.(61)
Thetransformationmatricescanbedecomposedintotheproduct
1)Ax(D(u)=A−a)Λ(βa).x(
(62)
13
Here
Ax(a)=
√
√
ThematrixΛdependsonthevector
≡βuβ=
√
β2
.(65)
1+a·u
.(66)
↔−β.TheLetusnoticethattheinterchangeu↔u′isequivalenttothesymmetryβ
relativistictransformations(59)preservetheinvariant(47).Thisfollowsfromtherelation
D†(u)ˆaD(u)=aˆ=A†xηAx,
(67)
whereηstandsforthediagonalmatrixη=diag(-1,-1,-1,+1).
Thetransformationscomplytheprincipleofrelativity.Mathematicallyitisexpressedbytheirgroupproperties.LetD(u)andD(v′)betwosuccessiverelativistictransformationsrepresentedbythematrices(60).Thecompositionofthetransformationshastheform
)D(Ωx(φv)=D(v′)D(u),
provided
v=
v′+u[γ(1+a·v′)+gu·v′]
(68)
providedtheasymmetryofspace-timeisexpressedbythevectora.AsconcernsEq.(69),it
canbeobtainedfromtheusualrelativisticcompositionofthefactorsβ
givenbyEq.(66).Theinverserelation
v′=
v−u[γ(1+a·v)−gu·v]1+γ−(1+a·v′)+g,(76)
−u·v′
1+a·v′
=γ
(1+a·u)(1+a·v)−(1+a2)u·v
1+2au−uv,
v′
(81)
1
i=v√
i
1+2au−uv,i=2,3.1
Theinverserelationscanbeobtainedbytheinterchangev↔v′andu↔u′.UsingEq.(45),
theycanbewrittenasfollows
vv′+u+2auv1=
1′1
1+2au−u2
reliesonthescaleswearedealingwith.Fortheinfiniteresolutionitshouldbeaperfectpointwhosetrajectoryisafractalcurve.Foranarbitrarysmallbutstillfiniteresolutionε−1theperfectpointisapproximatedbyaparticlewhichwecall‘elementary’withrespecttothisresolution.Itisthereforenaturaltoassumethattheconceptsofthemomentum,energy,massandthevelocityofthe‘elementary’particlehavegoodphysicalmeaningalsoatthescaleswherespace-timeisexpectedtobreakdownitsisotropy.
Wedenotethevaluesofthemomentumandtheenergyoftheelementaryparticleby(P
′andE′)inthereferencesystemsSorS′,respectively.InconsistencewiththeandE)or(P
principleofrelativityandtheideaspresentedabove,wesearchforrelationsconnectingthesequantities.Inordertodothat,letusfirstdefineassociativevariablesπµ={π,π0}withthefollowingproperty.ThecomponentsofthevariablesdeterminedrelativetothesystemsSandS′transformintheway
π′=Π(u)π,(83)where
Π(u)=
Theinversetransformationπ=Π−1(u)π′isgivenbythematrix
Π−1(u)=
δij+guiuj−γaiuj−g+ui+γ+ai−γuj1+γ+
.(84)
δij+guiuj+γaiuj+g−ui+γ−ai+γuj1+γ−
.(85)
ThereexistsmutualcorrespondencebetweenthetransformationmatricesΠandDgivenby
thematrixtransposition
Π(u)=D†(u).(86)Accordingtotherelation,thematrixΠcanbeexpressedintheform
1)Aπ(Π(u)=A−a)Λ(βa)π(
(87)(88)
where
1A−a)=A†a).π(x(
Thegrouppropertiesofthetransformations(83)aredeterminedwithrespecttothecompo-sition
)Π(Ωπ(φv)=Π(v′)Π(u),(89)providedthevelocitiesu,v′,andvsatisfytherelation(69).Here
)=A−1R(φ)Aπ.Ωπ(φπ
(90)
WeshowthatEqs.(68)and(89)areconsistentwithrelation(86).LetustransposeEq.(68).
Exploitingthecorrespondence(86)andusingEqs.(72),(88),and(90),wecanwrite
)=Π(Π(v)Ωπ(−φv)Ω†u)Π(v′).x(φ)=Π(
(91)
WeapplythetranspositionoperationonEq.(70)too.AsthematricesΛareinvariantunder
uandβv′inthemutualreversetheoperation,weobtainthecompositionoftheparametersβ
16
order.Fromthesymmetryreasons,thecompositionmustbeofthesameformasEq.(70).Wehavetherefore
R(−φ)Λ(βw)=Λ(βv)R(−φ)=Λ(βu)Λ(βv′).(92)ThevectorβwcorrespondstothevelocitywaccordingtoEq.(66).Thevelocityisgivenby
theformula(69)inwhichthevelocitiesuandv′aremutuallyinterchanged.MultiplyingEq.
(92)bytheA−π1
fromtheleftandbytheAπfromtheright,weget
Ωπ(−φ)Π(w)=Π(v)Ωπ(−φ
).(93)
TogetherwithEq.(91)onehas
Ωπ(−φ)Π(w)=Π(u)Π(v′).
(94)Afterperformingtheinterchangeu↔v′,weobtainEq.(89).Itwasthusshownthatthecom-positionoftwosuccessivetransformationsofthevariablesπfollowsfromthecompositionofthecorrespondingtransformationsofthecoordinatesandtime,providedtheirtransformationmatricesareconnectedbytherelation(86).
Unlikethetransformationsofthecoordinatesandtime,theinvariantcombination
π20−π2+2π0a·π
(95)
constructedfromthevariablesπdoesnotcorrespondtothemetrics(48).Inordertoremove
thisdefectwehavetodeterminethe4-momentumoffreeparticlebymeansofnewvariables.Thetransformationsofsuchvariablesshouldpreservethesamemetricinvariantasthetrans-formationsoftheirkinematicalcounterparts,thecoordinatesandtime.Weshowthatthere
existstwosetsofthevariablespµs={Ps,E},s=L,Rdefinedbytherelation
π=As(a)ps,
(96)
with
As(a)=
δij±εijkak0
01
,(97)
whichcomplytherequirement.HereεijkistheLevi-Civitasymbol.Theplus(inthenext
everyupper)signandtheminus(inthenexteverylower)signcorrespondstos=Lands=R,respectively.Wewillregardthevariablespµspace-timecharacterizedbytheasymmetrysasthe4-momentumofanelementaryparticleina.Weattributethefirstsetofthevariables(s=L)totheparticlewhichwecallleft-handed.Thesecondset(s=R)correspondsparticlerevealingright-handedtypeofmotion.TherelationbetweenthemomentaP
tothe
sandtheaboveconsideredvariableπreads
π=Ps±Ps×a,
P
π±a×π+(a·π)as=Thetransformationsofthevariablespreservetheinvariant
22+2ξ0s.ξ0−ξa·ξs
(100)
s/dξ0.Theyarerelatedtothevelocitiess=dξLetusintroducetheparametersUuasfollows
s=Uu∓u×a,
u=
s∓s+(s)Ua×Ua·Ua
,1+a2
G±=
g±
,(105)1+2a·U
whichtogetherwiththesymmetryproperties(55)and(56)determinetheinversematrix
)=∆(U′)=∆−1(U
δij+GUiUj+G+aiUjGUai+G−Ui
+γUj1+γ−
2
.(106)
Thetransformationmatrixescanbewrittenintheway
s)=A−1(∆(Ua),psa)Λ(β)Aps(
where
Aps(a)=Aπ(a)As(a)=
11+a2
(107)
δij±εijkak√−ai
0
1+γ−+
′GU2a·V·V′+G−U
.(110)
Formula(109)isconsequenceofEqs.(70)and(107).ThematrixΩphasthestructure
)≡Ωps(φ)=A−1R(φ)Aps=A−1Ωπ(φ)As.Ωp(φpss
18
(111)
TheinverserelationtoEq.(110)reads
′=V
−Uγ+G−−GU·VVa·V
2+m2(1+a2)Pa·P.0−
(117)
Wewillnotconsiderherethesolutionwithminussignbeforethesquarerootcorresponding
.Ithasasingletoanti-particles.Theenergy(117)ispositiveforarbitraryvaluesofaandP
minimumforthemomentumandenergy
0=M0Pa,
19
0)=M0.E(P
(118)
ThemassM0(theminimalenergy)dependsontheasymmetryparameterabytherelation
M0=
m0
.1+a2
(119)
Beyondtheminimum,asthemomentumincreases,theenergytendstoinfinity.Itconsistsoftwoterms.Thefirsttermisthefreeenergy
E=
1+a2(121)
0)andtheparameterisexpressedintermsoftheminimalenergyEmin=E(Pa.Weconjecture
thatsimilarconsiderationsconcernalsootherintrinsiccharacteristicsoftheparticles,suchasspinandcharge.Onecanconsiderthephysicalquantitiesasrelatedtothegeometricalstructuresofparticletrajectoriesinthefractalspace-time.Weanticipatethatspinofaparticlemaybeconnectedtospecialerraticcharacteroftheleft-handedorright-handedfractal-liketrajectoryatsmallscales.Inthedomain,wherethefractalattributesofthemotionexpire,thevalueofadiminishesandthefractaldynamicswillconvertintotherelativisticdynamicsinsmoothspace.
Wemakesomecommentsontheenergymomentumconservation.Letusconsideraclosedsystemwiththemassm0whichsplitsintotwoparts.Thedecayisgovernedbytheenergy
∗∗∗2
momentumconservation,m0=q2+m2q1=−q2,asdescribedinthe2and
systemrestframe.Thesimilarisvalidinspace-timewithbrokenisotropy.Denotingtheenergymomentumfour-vectorsofthedecayproductsbyp1andp2,onecanwrite
222
m20=(p1+p2)=m1+m2+2p1p2
222222a·P2−(a×P2)=E1−P1+2E1a·P1−(a×P1)+E2−P2+2E2
22=(E1+E2)−(P1+P2)+2(E1+E2)a·(P1+P2)−a×(P1+P2).
2
1·P2+E12+E21−(1)(2)+2E1E2−Pa·Pa·Pa×Pa×P
Weseethatifthefourvectorsp1andp2arecharacterizedbytheinvariant(47),theirsum
p1+p2possessesthispropertytoo.Thisimpliestheconservationofthetotalenergyand
20
(122)
=P1+P2,whichresultsintheconservationofthefreeenergymomentum,E=E1+E2andP
221P+M1+
√
√
calculation,theformulaeareconsistentwiththeproportionalitybetweenthemomentumPtheinvariant(47)and(115).Thecoefficientof
sandthevelocityvisdenotedbythesymbol
Mandrepresentstheinertialmassoftheparticle.Theinertialmassdependsonthevelocityintheway
M(v)=M0γ(v).(130)TheM0istherestmassofthe‘elementary’particlegivenbyEq.(119).Therestmass
correspondstotheminimalenergy(118).
LetusnowderivetheinverseexpressionwithrespecttoEq.(128).Besidestheinvariant(47)and(115),onecanconstructtheinvariantrelation
(A†xηAps)µνxµpν=tE−x
·Ps+2a·xE∓a·(x×Ps)=τM0.(131)
Itrepresentstheequationoftheelementaryparticletrajectoryexpressedintermsofitsmo-mentum,energy,anditsmassM0.Thesolutionoftheequationisx=vt,where
v=
Ps±Ps×a−aE
1+a2
.(134)
Weseethatforthezerovalueofthemomentumthereexiststhenon-zerovalueofthevelocity
v0=−
a
√
thefactorγ.AsshownintheAppendixB,itcorrespondstotheminimallengthcontractionsandtotheminimaldilatationsoftime.
Ingeneral,forarbitraryenergyofaparticle,wehaveshownthefollowingresult.Itconsistsoftheclaimthatinspace-timewithbrokenisotropythemomentumoftheparticleisnotpar-alleltoitsvelocity.Approximatingthefractalspace-timebyafamilyofthespacesRεwithdifferentiablegeometry,thevelocityfluctuateswithrespecttothemomentumindependenceonthestochasticnatureoftheanisotropyparametera.Accordingtothefluctuations,the‘point-like’particlemovesarounditsmomentumpassinganunpredictableandchaotictrajec-torycharacteristicforfractals.Independenceonthefluctuatinganisotropya,thevelocityoftheparticlecanbearbitrarylarge.Thisisconnectedwithapossibilityofpropagationofphysicalsignalswithvelocitiesexceedingthespeedoflightintheisotropicspace-time.Thepropertyis,however,compensatedbytheextremeirregularandrandomshapeofthetrajec-toriesalongwhichthesignalismediated.Westressherethatthestatementsarerelativeanddependonthescaleoftheobserveraswell.When‘measuring’thefractalpropertiesoftheparticlemotion,theobserverexpressesthemintermsofitsownfractalcharacteristicsbeingafractalitself.Thisistypicalfortheparameterawhichisafunctionofthescalestructuresofboththeobservedparticleandtheobserver(seesectionV.).Accordingtoouropinion,theparametercouldhaverelevancetomoredeepercontextofthemetricpotentialswhichhaverelationtotheintimatestructureofspace-time.Itmaybeconnectedwitha‘fieldofthespace-timeasymmetry’reflectingthestructureatsmallscales.Existenceofthe‘field’wouldresultintoadisparitybetweentheenergy-momentumandthecoordinatesandtime.Herethedisparityisdemonstratedbythefollowingcommutationrelation
†
A†psηAx−AxηAps=
±ǫijk2ak−2ai
2aj0
.(137)
Thecommutatorisnon-zeroprovidedthenon-zerovalueofthefield.Inthepresentpaper
weapproximatethefieldofthespace-timeasymmetryintermsoftheanisotropyvectoraandconsideritasarandomandchaoticquantity.AsshowninsectionV.,theanisotropyhasrelevancetotheanomalousexcessofthetopologicaldimensions.Theinvestigationsinthisdirectionrequire,however,moredetailedandfundamentalstudy.
Theideastackledinthissectionconcerngeodesicreferencesystemsintheimmediatesur-roundingsofagivenpointPinthe4-space.Thesurroundingsdependontheresolutionwearedealingwith.Onecanintroducesuchsystemsintheproximityofeverypointofthegeodesicallines.Accordingtotheideasaboutfractalpropertiesofspace-timeatsmallscales,wecharac-terizethegeodesicsystemsofinertiabythemetrictensorsaˆ.Themetricsreflectssignificantpropertyofthefractalstructureofspace-timewhichisbreakingitsisotropy.Thestructureisrevealedindependenceontheleveloftheresolution.Foragivenresolution,itispossibletotransformawaytheanisotropyofthespace-timelocally,exploitingnewpseudo-Cartesian
K0}.Wecanintroducethevariablesinthewaycoordinatesrµ={r,r0}andkµ={K,
r=Axx,
Theexplicitformoftheequationsreads√r=
√
k=Apsps.
(138)
Unlikethexandpthepseudo-Cartesianvariablesrandkarefunctionsoftheanisotropya.Usingthevariables,onecanwritethecorrespondingrelativisticinvariantintheform
2r0(a)−r2(a)=τ2,
222(K0−Ka)=M0(a).
(141)
Thespace-timeanisotropyisthusremovablelocallybutcannotberemovedcompletely,i.e.
simultaneouslyforeverypointofthe4-space.Hence,weconsidertheanisotropyatsmallscalestobetheintrinsicpropertyofspace-timeitself.Itsadequatedescriptionassumesapproacheswithinafractalgeometry.
5Interactionsofasymmetricfractalsystems
Theabilityoffractalstostructurespace-timewasdiscussedinRef.[17].Suchapproachgivesuspossibilitytoattributegeometricalnotionstothestructuralparameterscharacter-izingfractaltrajectoriesoffreeparticles.Weconsideroneoftheparameterstobethescaledependentcoefficientareflectingbreakingofthespace-timeisotropy.Thequantityisassumedtohavestochasticandirregularnaturerepresentingthefractalpropertiesofthestructuresatsmalldistances.Thenaturalquestionariseswhetheronecanorganizearegioninwhichthestructurescouldbesomehoworiented.Weanswerthequestionpositivelyandarguethatsuchregioncouldbecreatedintheinteractionsofhadronsandnuclei.Thisconcernshighenergieswheretheobjectsrevealfractalcompositionintermsofthepartoncontentinvolved.Thefractalityresultsfromnonexistenceoflowercutoffatwhichthestructureswouldstop.Weconjecturethattheinteractionsofthefractalobjectsaffectthecharacterofspace-timeatsmallscales.Onecanimaginethatthechaoticcharacterofthespace-timeanisotropycanbeorientedandspace-time‘polarized’bytheinteractionsoffractalspossessingmutuallydifferentanomalousdimensions.Inotherwords,weconjecturethattheinteractionsoftheasymmetricfractalsystemsresultinpolarizationofthe(QCD)vacuum.Thevacuumfluctuationsbecomeorientedformingaregionofthespace-timeasymmetry.Wedenotetheasymmetrycorrespond-ingtotheregionbythevectora¯.Withouttheorganization,theparameterrepresentscaledependentrandomquantitya.Aswewillshow,thea¯canbeconnectedwiththeanomalous(fractal)dimensionsoftheinteractingfractals.
Letusconsiderthecollisionoftheasymmetricfractalobjects.Theneedtosatisfytheprinciplesofthescale-motionrelativityimpliesreplacementofthescaleindependentphysicallawsbythescaledependentequations.Thisconcernstheenergyandmomentumwhichinthepresenceofaspace-timeanisotropyareconvertedtothevariablessatisfyingtheformula(117).Weapplytheformulatotherelationsconnectingthevariablesoftherecoilparticlewiththecorrespondingmomentumfractionsintheconstituentinteraction.Weinferonfractalcharacterregardingthemotionoftheparticleformtherequirementswhichleadtotherela-tions.Theyresultfromthephenomenologicalanalysisofthezscalingvariableandconcerntheminimalresolutionε−1withwhichonecansingleouttheconstituentinteractionunder-lyingtheproductionoftheinclusiveparticlem1.Theassumptionisreflectedbytheformofthemomentumfractionsχ1andχ2whichfollowsfromtheconditionforthemaximumofthecoefficient(3).Accordingtotherequirement,therecoilparticlehastheenergyE′expressedintheway
2E′2
+µ2(142)=χ1+χ2=ω22−(ω1−ω2).s
24
Forthesakeofsimplicity,allmassesmiandMiareneglected.WeidentifytheenergyE′withtheexpression(117).Thisgives
ω21
+µ21+
√
E,χ⊥=
2P⊥Pmax
′s
=⊥
(1+a¯2)(χ2z+χ2⊥)
=
2+µ22,(145)a¯χ
ω2
z=ω1Theobtainedsystemfortheunknownvariablesχ−ω2.
(146)
zandχ⊥dependsontheparametera¯.The
variationrangeofthevariablesisgivenbytheconditionχ1+χ2and(143),itcanberewrittenasfollows
≤1.AccordingtoEqs.(142)(χz−a¯)2+(1+¯a2)χ2≤1+¯
a2⊥.(147)
Theχzandχ⊥areboundedinsidetheellipsoidgivenbytheasymmetrya¯.Ifweapproach
thephase-spacelimitofthereaction(1),thevariablestendtotheirboundaryvalues
χz→χ˜z=
Pzmax
E′,(148)
max
andsatisfytheequationoftheellipsoid.Similarappliestheelementaryinteraction.Theparticle’smomentumP
foranyotherparticleproducedin
andenergyE′areconnectedbythedispersionrelation(117).Inthezeromassapproximation,therelationcanbeexpressedintheway
PzE′
2=1+a¯2
.(149)AsfollowsfromEqs.(142)and(143),itisidenticaltotheequation
χ2
z
χ=1+a¯2,
(150)
1+χ2
where
Pzs
P⊥
s
χ1+χ,
2
χ1+χ.(151)
2
Thevaluesofχz/(χ1+χ2)arelimitedwithintheinterval
a¯−≤
χz
with
a¯±=a¯±
√
1+a¯2.(154)
Substitutingtheexpression(154)intotherelation(146),onearrivesattheequationforthe
asymmetrya¯.Itssolutionwhichcompliesthephysicalrequirementsonthekinematicsofthesubprocessreads
α−1a¯=λc,(155)
α
where,λc≤1.(156)
(1−λ1)(1−λ2)
UsingEqs.(8),(9),(146),(150)and(155),onecanexpressthevariablesχzandχ⊥inasimpleform
√
χz=µ1−µ2,χ⊥=2
λc=
αsin2(θ/2)−
1
cos2(θ/2),α
χ⊥→χ˜⊥=sinθ.
(159)
Alltheexpressionsaregivenintermsofthecoefficientαwhichistheratiooftheanomalous
fractaldimensionsofthecollidingobjects.Thecollisionsoftheasymmetricfractalsystemsarecharacterizedbythedifferentfractaldimensionsandthuswithα=1.Intheconsideredscenario,itresultsincreationofthedomaininwhichtheisotropyofspace-timeisviolated.Thespace-timeanisotropyintheinteractionregionisgivenbytheformula(155).Ifα=1,thereisnopolarizationofspace-timeinducedbytheinteraction.Thiscorrespondstothecollisionsofthefractalspossessingequalfractaldimensions.Similarsituationconcernstheinteractionoftheobjectswhichrevealnofractal-likesubstructure.Theasymmetrya¯becomesnon-zeroforα=1.Itchangesitssignifλ1↔λ2andα↔α−1,i.g.iftheinteractingfractalsaremutuallyinterchanged.Theparametera¯istheproductoftheinducedasymmetry
α−1
(160)a¯0=
αandthefactorλc.Theinducedasymmetryofspace-timeresultsfromtheinteractionofthefractalscharacterizedbymutuallydifferentanomalous(fractal)dimensions.Thevalueoftheasymmetrywasidentified[7]withthespacecomponentofthefourvelocity
V
=a¯0.
1−V2
26
(161)
ThevelocityVhasitsoriginintheasymmetryoftheinteractionandvanishesinthecollisionsofobjectswhichpossessequalfractalstructures(α=1).Itcanbeexpressedbytheform
V=
α−1
provided
1+V1V2α=α1α2.
,(163)(164)
Ifweexploittheexperimentallyestablished[7]relationδA=Aδ,thelastequationcanberewrittenasfollows
A3A2
A2
sNN≥20GeVwherethezscalingbecomes
valid.Inordertodealwithsufficientasymmetry,wehavetoconsidertheprocessesinwhichthefactorλcislargeenough.Thisconcernstheinteractionswithlargetransversemomentaoftheobservedsecondaries.Wehaveestimatedtheexpectedasymmetryinthecaseoftheexperimentallymeasuredinclusivereactions[24]at400GeVprotonincomingenergy.Forthe
√
pAinteractionsα=Aandλc≃E⊥/(A).Theasymmetrywasevaluatedaccordingtotheformula(155)inthemostoptimisticcaseofE⊥=7GeV.Wehaveobtainedthevaluesa¯∼0.09÷0.13forvarioustargetnuclei.Therelativelyhighestimatesareratherheuristicandshouldnotbetakenliterally.Oneaprioridoesnotknowwhetherthefullasymptoticregimewithrespecttothefractalpropertiesoftheinteractionisachievedattheconsideredcenter-of-massenergy.Thismayoccurathigherenergieswhere,forthegiventransversemomentum,theprojectionfactorλcbecomesmuchsmaller.Theexperimentalsearchfortheeffectshouldthusrelayonthedetectionoftheparticleswithstillhighermomenta.Itisconnectedwithdifficultiesinmeasurementsofsmallcrosssectionsatwhichtheparticlesareobservable.Thisconcernsalsothestatisticalanalysisofanexperimentfromwhichonecouldinferontheexistenceofthepossibilitytoinduceapolarizationofspace-time.
27
6Summary
Thequestionsaddressedinthepaperconcerngeneralpropertiesoftheparticleproductionathighenergies.Thepropertiesareconnectedwiththenotionssuchaslocality,self-similarityandfractalityinthecollisionsofhadronsandnuclei.Theyaremanifestedmostlyintherelativisticregimeoflocalpartoninteractionswhichunderlietheproductionoftheobservedsecondaries.Inthisregime,thedescriptionoftheinclusivecrosssectionsrevealsscalingbehaviorindependenceonthesinglevariablez.
Wehavediscussedsomeaspectsoftherelationbetweenthefractalityoftheinteractingobjectsandthefractalpropertiesofspace-time.Itisrelevantforsmallscaleswherethepartoncompositionoftheobjectsissupposedtorevealafractal-likesubstructure.Theas-sumptionhasfundamentalconsequencewhichisbreakingofthereflectioninvarianceattheinfinitesimallevel.Specialattentionisdedicatedtotheelaborationoftheformalismconcern-ingtherelativityinspaceswithbrokenisotropy.Ourtreatmentcorrespondstoachangeintheenergyformulaintherelativisticcase.Wehaveobtainedexplicitrelationsbetweentheenergy/momentumandthevelocityinspace-timecharacterizedbytheasymmetrya.Inviewoftheseresults,increaseofstochasticityoftheparameterwithdecreasingscaleswouldresultinunpredictablefractal-likemotionofparticleswithrespecttotheirmomenta.ThisimplieschangeoftherestmassM0independenceonthevalueofaaswellaspossibilityofmotionwiththevelocitiesexceedingthespeedoflightinisotropicspace-time.Wehavedeterminedthecoefficientcharacterizingtheanisotropyofspace-timeintheinteractionsoftheasymmetricfractalsystems.Itisexpressedintermsoftheanomalousdimensionsofthefractalobjects(hadronsandnuclei)collidingathighenergies.Therelationisilluminatedwithrespecttothechoiceofthescalingvariablez.Thevariablezrepresentsafractalmeasureproportionaltotheformationlengthofaproducedparticle.Thescalinghypothesisstatesthatthedifferen-tialcrosssectionfortheproductionoftheparticledependsathighenergiesonitsformationlengthuniversallyandinanenergyindependentway.TheevolutionoftheformationprocessisexpressedbythescalingfunctionH(z).Theproposedscenarioisstressedbytheresultsofouranalysisconcerningexperimentaldataathighenergies.Namely,basedontheconfronta-tionofthezscalingschemewiththeexperimentaldata,wehaveshownthattheanomalousfractaldimensionsfortheinclusiveproductionofpions(δ∼0.8)andforjets(δ∼1)nearlycorrespondtotherelationD=1+δ=2.TherelationcharacterizesfractaldimensionofFeynmantrajectoriesandisadirectconsequence[17]oftheHeisenberguncertaintyrelations.Presentedapproachtothezscalingshowsthattheobservedregularitycanhaverelevancetofundamentalprinciplesofphysicsatsmallscales.Thegeneralassumptionsandideasdiscussedhereunderlineneedofsearchingnewapproachestophysicsatultra-relativisticenergies.Thisconcernsbetterunderstandingofthemicro-physicaldomaintestedbylargeacceleratorsofhadronsandnuclei.
Acknowledgment
ThisworkhasbeenpartiallysupportedbytheGrantoftheCzechAcademyofSciencesNo.1048703(128703).
28
AppendixA
Wewouldliketopresentsomepropertieswhichfollowfromthedeterminationofthevari-ablesusedinourscheme.Theelementaryinteractionofconstituentsischaracterizedbythemomentumfractionsx1andx2.Therelationbetweenthefractionsisgivenbytheminimumrecoilmasshypothesisintheconstituentinteraction.ThevariablesaredeterminedinawaytomaximizethevalueofΩ,whichgivestheminimalresolutionε−1.Eachinteractingconstituentconsistsfromaleadingpartcarryingthemomentumfractionλiandofaparton‘coat’whichisafractalcloudoftinypartonswiththemomentumfractionχi.Whatpenetratesthecloudisusuallydeterminedbythevirtualityofaprobeandisconnectedwiththeresolution.Thesituationis,however,differentascomparedtothedeepinelasticprocesseswherethe‘elemen-tary’interactionisfixedbythekinematicalcharacteristicsoftheleptonscattering.Inthecollisionsofthecompositeobjectssuchashadronsandnuclei,onecan,inprinciple,recognizetheinteractionsofconstituentswhichunderlietheproductionprocesses,aswell.Thelevelofrecognitionisgivenbytheresolutionε−1,withwhichonecansingleoutthecorrespondingsub-processes.Itconcernsbothhardandsoftcollisionscharacterizedbythedifferentmomentumtransfer.Thisinturndeterminesthevirtualityofaprobecarryingthemomentumtransferredandpenetratingintothefractalsubstructureoftheveryconstituents.Thesquaresofthe4-2
momentatransferred−Q21and−Q2fromthefirstandthesecondinteractingconstituentareasfollows
22
Q2Q2(166)1=(x1P1−q),2=(x2P2−q).
Inthezeromassapproximation,thequantitiesarecorrelatedwiththesquareofthesubprocess
energysxviatherelation
2
sx+Q2(167)1+Q2=0.Thetransferredmomentaareusuallyconsideredasvirtualitiesoftheprobesthatpenetratethe
internalstructureoftheinteractingobjects.Iftheunderlyinginteractionofconstituentsdoesnotpossesthecontactcharacter,thevirtualitiesarecarriedbythequantaofthecalibrationfields.Thenthefieldsmediatetheinteractionbetweentheconstituents.Thetransferred
2
momenta−Q21and−Q2areconnectedwithresolution.Theyareequalfor
χ1
.(168)λ2
Theconditiondeterminestheboundarybetweenthephasespacehemispheres[7]belongingto
2
theinteractingobjects1and2.Wehave−Q21>−Q2inthehemispherecorrespondingtotheobject2.Thisregionispreferabletostudyoftheprocessesinwhichtheconstituentsfromtheobject1penetratedeeperintothestructureoftheobject2andtestitinmoredetail.
22
For−Q21<−Q2itisviceversa.Withtheincreasingvaluesof−Qi,theinteractionoftheconstituentstakeplaceonstillsmallerdistances.Thisinturnincreasesthespatialresolutionnecessaryforinvestigationoffractalityatsmallscales.
Nextwewillshowthatourdeterminationofthemomentumfractionsaccountsfortheback-to-backtopologyintheconstituent’scenter-of-masssystemSc.First,letusconsiderthemomentaoftheinclusiveparticleanditsrecoilinthetotalcenter-of-masssystemS.Forthenucleon-nucleoncollisionstheparameterα=1andthe‘coats’oftheinteractingconstituentscarrythemomentumfractions
χ1→µ¯1≡λ
1−λ2
,29
χ2→µ¯2≡λ
1−λ1
.(169)
Theconstituentsareindistinguishableforx1=x2.Inthisregion,eachofthempossessesthecloudoftinypartonswiththesamemomentagivenbyµ¯1=µ¯2.Thisisnotlongervalidforx1=x2.Letusassumethatx1>x2.ItfollowsfromEqs.(6)and(8)thatλ1>λ2andµ¯1<µ¯2.Thisimpliesthesituationwhentherecoilobjectmovesinthedirectionnotpreciseoppositetotheinclusiveparticlem1inthesystemS.Forthesakeofsimplicity,wedemonstratethisstatementintheapproximationwhenallmassesareneglected.Weusethenotations
E−qzP2q
√→,(170)λ1=
P1P2s
¯−qP2q¯E¯z
√µ¯1=→,(171)
P1P2s
χ1=
P2q′
√
′
E′−qz→,P1P2s
(172)
¯andqintroducingtheenergyandmomentumfortherecoilparticlebythesymbolsE¯(orE′
andq′forα=1)inthecenter-of-masssystemS.Theanglescontainedbythemomentaq,q¯,andq′withthecollisionaxisorientedinthedirectionofmotionofthecollidingobject1aregivenbytheexpressions
tan(θ/2)=
λ1
,
¯2)=tan(θ/
µ¯1
,
tan(θ′/2)=
χ1
,(173)
¯<π(θ+θ¯>π).Thiscanbeprovedrespectively.Therelationsx1>x2(x1 1> λ1 1−λ1 .(174) ¯2),andconsequentlyExploitingEqs.(169)and(170),wecanwrite1>tan(θ/2)tan(θ/ ¯<π.Theinverseinequalitiescanbeprovedequivalently.Wehavethusshownthatinθ+θ the2→2processesthereisperfectback-to-backcorrelationbetweentheinclusiveparticleanitsrecoilinthereferencesystemSonlyforx1=x2.Thisisvalidalsoforthereactionswheretheparameterα=1.Changeoftheparametercorrespondstoachangeofthescaleofthereferencesystemandresultsinchangingoftheresolution.Inthecenter-of-masssystemS,theconstituentsubprocessrevealsback-to-backtopologyinthespecialcase cosθ= 1−α x1x2 Thisallowsustowrite λ1= ccP2q √ x1 cc P1P2 = E− s c cqz x1 .(177) ′′ TheanglesθcandθccontainedbythemomentaqcandqcwiththecollisionaxiscanbeexpressedinthesystemScintheway tan(θc/2)= Thisimplies λ1x2 , ′ tan(θc/2)= χ1x2 .(178) ′ tan(θc/2)tan(θc/2)=1 (179) ′ andconsequentlyθc+θc=π.Really,thesubstitutionofexpressions(178)intoEq.(179)gives λ1χ1(λ2+χ2).(180) Itremainstoexploittherelationλ1λ2=χ1χ2andonegetstheidentity.Wehavethusshown thatourdeterminationofthemomentumfractionsisconsistentwithback-to-backtopologyofthecollisionsinthecenter-of-masssystemsoftheinteractingconstituents. AppendixB InthisAppendixwediscusssomeaspectsconcerningtherelativistictransformationsoftheenergyandthecoordinatesinspace-timewithbrokenisotropy.Reasonabledefinitionofthevariablesassumesthefulfillmentofcertainrequirementsresultingfromthepropercompositionofthevelocities.Itregardstheprincipleofcausalityandtheconstraintonthepositivityoftheenergy.Attheendweaddsomecommentsonthecharacterofthelengthscontractionsandthedilatationsoftime. Accordingtothespecialtheoryofrelativity,thevaluesoftheparticle’svelocitiesareboundedwithinthesphereu≤1inanyinertialframe.Thisisgivenbythefactorγwhichfora=0andforthesuperluminousvelocitiesbecomesimaginary.Thesituationchangesifweadmitthebreakingofthespace-timeisotropyexpressedbythenon-zerovalueofa.Thevelocityspheredeformstoanellipsoidwiththefocusinthebeginningofthevelocity√space.Centeroftheellipsoidisshiftedintothepointu=aanditslargeraxisbecomes 1+a2,a+=a+ √ composedvelocity(38)isboundedbytheconditiona−≤v≤a+aswell.Ifthelimitingvelocitya−ora+iscomposedwithavelocityu, a+u+2aa−= a−−u 1+a, (183) +u onegetsagaina−ora+,respectively.Asfollowsfromtherelations a=− a+− 1+2aa, (184) + thelimitingvelocitiesa−anda+aremutuallyinversewithrespecttoEq.(45).Fora>0,theinstantvelocityoftheparticleisboundedfromabovebythevalueofa+whichislargerthanunity.Thisgivespossibilityofthemotionwiththevelocitiesexceedingthespeedoflightcinisotropicspace-time. Wewillshowthatpropagationofanenergeticsignalwithsuchvelocitiesfulfillstheprincipleofcausality.Accordingtotherequirement,theconsequence-thedetectionofasignalcannotprecedeitsemissioninwhateversystemofreference.Letusassumethatthesignalwasemittedinthepoint(x1,t1)anddetectedat(x2,t2)withrespecttotheframeS,dt=t2velocityofthesignalpropagationisv=dx/dt,dx=x2−t1>0.ThefromthesystemS′ −x1.Letuslookatthetwoevents movingrelativelytotheinitialonewiththespeedu.Accordingtothetransformation(42)wehave dt′=γ(u)[(1+2au)dt−udx]=γ(u)dt(1+2au−uv). (185) Thefactorontherighthandsideisnon-negativeforanyvelocitiesfromtheintervala−u,v≤a+.Consequentlydt′=t′2signalpropagatesbetweenthepoints−t′1(≥x1,0.t1)Theandsame(x2,tis≤2)validwithinthethevelocitygeneralvcase=dxwhen/dt.theWeassumethatthesystemS′ismovingwithrespecttothereferenceframeSwiththevelocityu.AsfollowsfromEqs.(59)and(60),thetimeintervaldt′ofthesignalpropagationrelativetothesystemS′isgivenby dt′=(1+γ+)dt+γ+a·dx−g+u·dx=[1+γ+(1+a·v)−g+u·v]dt. (186) WeseefromEq.(79)thattheexpressioninthebracketsisnon-negative.Thisimpliesdt′inagreementwiththecausalityprinciple,whichisnotviolatedinspace-timewithbroken≥0 isotropy. Thenextstepistoprovethepositivityofthetransmittedenergy.CombiningEqs.(125)and(126),onehas π= (1+a2)2 1+a·v (1+a·u)(1+a·v)−(1+a)u·v . (188) WhenexploitingEqs.(77)and(79),therelationcanberewrittenintotheform E′ =E (1+a·v′)γ(v′) Asfollowsfromtheinequality validforanyvelocityvboundedbytheellipsoid(80),thefactorsontherightsideoftherelation(189)arenon-negative.TheenergyofthesignalisthuspositiveineachsystemofreferenceS′whichismovingrelativelytothesystemSwiththevelocityu.Theabovementionedpropertiesenablethepropagationofphysicalsignalsincludingtransportationoftheenergywiththevelocitiesexceedingthevalueofc-thespeedoflightinisotropicspace-time.Thiscanoccuratsmallscaleswithintheregionswithbrokenspace-timeisotropy. Basedonthetransformations(59),wecandrawconclusionsregardingthecourseoftimeandthechangeoflengthsoftheelementarysectionsexpressedrelativetothesystemsSandS′.LetusconsideraclockatrestwithrespecttothesystemS′.Timerecordedbytheclockisreferredasthepropertime.AccordingtoEq.(133),theincreaseofthepropertimedτandthecorrespondingincreaseoftimedtinthesystemSarerelatedasfollows dt(v)= dτ (1+a·v)2 − (1+a2)v2 . 0≤1+aa−≤1+a·v (190) (191) Inviewoftheasymmetryrepresentedbythefactora,thecourseoftheclocktimecanbeeven fasterthaninitsrestframe,whenobservedbyamovingobserver.Theminimaltimeintervalbetweentwoevents dτ dt(va)=≤dτ,va=a,(192)21+a isrecordedfromthesystemSinwhichtheclocksaremovingwiththevelocityva.Theclocksareslowingdown(theirtimeintervalsincrease)iftheirvelocityapproachesthelimitgivenbyEq.(80). Thechangeofthelengthofasectionwiththevelocityislittlemorecomplicated,thoughtitstransversedimensionswithrespecttothemotionarenotsubjectedtoanychange.Indeed,ifthevelocityisorientede.g.inthedirectionofthex-axis,theyandzcomponentsofthecoordinatesareinvariantwithrespecttothetransformation(59).Asconcernsthelongitudinalcontractions,wediscussherethesimplifiedsituationinwhichthesectionhasnotransversedimensionrelativetoitsmotion.ItisnaturaltodefinethelengthdlofthesectionwithrespecttoSasthedifferencebetweenthesimultaneouscoordinatevaluesofitsend-points.IfthesectionisatrestintheS′system,itsrestlengthisgivenbydl0=x′2−x′1.Accordingtothespecificsituationconsidered,thebothvaluesareconnectedwiththeexpression dl(v)=dl0 1+a2≥dl0.The contractionsoftheelementarysectionwithrespecttoitsmaximalvaluedl(va)increaseifthevelocityofthesectionapproachestheboundarygivenbyEq.(80). References [1]ProceedingsoftheXInternationalConferenceonUltra-RelativisticNucleus-NucleusCollisions, Borlange,Sweden,1993[Nucl.Phys.A566,1c(1994)]. 33 [2]ProceedingsoftheXIIInternationalConferenceonUltra-RelativisticNucleus-NucleusColli-sions,Heidelberg,Germany,1996[Nucl.Phys.A610,1c(1996)].[3]ProceedingsoftheXIVInternationalConferenceonUltra-RelativisticNucleus-NucleusColli-sions,Torino,Italy,1999[Nucl.Phys.A661,1c(1999)].[4]A.M.Baldin,ParticlesandNuclei8(1977)429.[5]V.A.Matveev, V.A.Matveev,S.Brodsky,G.S.Brodsky,G. R.M.Muradyan,A.N.Tavkhelidze,Lett.Nuov.Cim.5(1972)907;R.M.Muradyan,A.N.Tavkhelidze,ParticlesandNuclei2(1971)7;Farrar,Phys.Rev.Lett.31(1973)1153;Farrar,Phys.Rev.D11(1975)1309. ˇ[6]I.Zborovsk´y,Yu.A.Panebratsev,M.V.TokarevandG.P.Skoro,Phys.Rev.D54,5548(1996).ˇ[7]I.Zborovsk´y,M.V.Tokarev,Yu.A.Panebratsev,andG.P.Skoro,Phys.Rev.C59,2227(1999).[8]F.W.FullerandJ.A.Wheeler,Phys.Rev.128,919(1962).[9]S.Hawking,Nucl.Phys.B144,349(1978). [10]J.Ellis,N.E.Mavromantos,andD.V.Nanopoulos,hep-th/0012216. [11]B.Mandelbrot,TheFractalGeometryofNature(Freeman,SanFrancisco,1982)[12]V.S.Stavinsky,Part.Nuclei10,949(1979). [13]G.A.Leksin,PreprintITEP-147,Moscow1976,12p.; G.A.Leksin,ProceedingsoftheXVIIIInternationalConferenceonHighEnergyPhysics,Tbilisi,1976,JINRD1,2-10400,Dubna,1977,A6-3.[14]M.V.TokarevandT.G.Dedovich,Int.J.Mod.Phys.A15,3495(2000); [15]M.V.Tokarev,JINRReportNo.E2-97-56,Dubna,1997;M.V.Tokarev,O.V.Rogaˇcevski,and T.G.Dedovich,JINRReportNo.E2-99-313,Dubna,1999.[16]I.Zborovsk´y,inProceedingsoftheXIIthInternationalSeminaronHighEnergyPhysicsProb-lems,Dubna,Russia,1994,editedbyA.M.BaldinandV.V.Burov(JINRReportNo.E2-94-504, Dubna,1994),p.290.[17]L.Nottale,FractalSpace-TimeandMicrophysics(WorldScientific,Singapore,1992).[18]R.P.Feynman,Rev.Mod.Phys.20,367(1948). [19]H.vonKoch,Archivf¨urMathematik,AstronomiochPhysik1,681(1904).[20]G.N.Ord,J.Phys.A:Math.Gen.16,1869(1983). [21]M.V.Lalan,BulletindelaSoci´et´eMath´ematiquedeFrance,65,83(1937).[22]J.C.Pissondes,J.Phys.A:Math.Gen.32,2871(1999).[23]L.W.Thomas,Phil.Mag.3,1(1927). [24]D.Antreasyanetal.,Phys.Rev.D19,764(1979). 34 Figure1:SuccesiveapproximationsofthevonKochfractalcurve.Itstopologicaldimensionis1,whileitsfractaldimensionisln4/ln3. 35 因篇幅问题不能全部显示,请点此查看更多更全内容