您的当前位置:首页广义Morrey空间中奇异积分算子和极大算子的加权不等式

广义Morrey空间中奇异积分算子和极大算子的加权不等式

来源:锐游网
维普资讯 http://www.cqvip.com 第14卷第3期 2OO2年9月 常德师范学院学报【自然科学版) Journal 0fa脚删eTeachersUniver ̄ty(Natural ScienceEdition) V01.14 No.3 SeD.2002 Article ID:1009—.3818(2002)03—.0017—.04 Weighted Inequalities for Generalized Maximal and Singular Integral Operators in Generalized Morrey Spaces LlⅢLan—zhe (Department Mathematics,Hunan Unlve_ ̄ty,Changsha Hunan,410082) A][J ̄ract_.The weighted inequalities for genemlized maximal oper- 0(B1)n(B2)= ; (ii)ⅡBl B2,then (B1) O(B2);0ii)U o(B( , r U ator and flgIl】ar iI删tot weIe obtained. ope ̄or in gelwJa]ized Mon ̄3,space8 and the chatacterizatimsforn0n—weightedimqIlality 0fmaximal opera・ r))= x E. Let be a posiitve increasing function on R and Key wol'ds:m嬲jn瑚operator; flgIl】ar imegIal operator;morrey space;C】(0),, ̄ight CIJ2N珊岫: O174.2 I)oemnmtC哦le: A satisfy he dotub ̄condiiton with a constant D≥1: (2r)≤却(r),f0r all r>0. Let w be a weihtg function on and 8 be a posiitve Borel lneasUl ̄on x E. The weighted inequalities for maximal and smguhr nitegral operators on (p>1)and BMO spaces are now Defmiitona.Let 1≤P<oo and f e a lbocally inte— grable function on x E。set well understood(see[2]).As Money space may be con— sidered as Rn extension of the spaces,it is natul ̄and im— IIfII ・ ( )= sup—portant to study the weihtged inequaliits feor maximal and si ̄hr integral operators on Morrey spaces.The main 。(南 r))I y IPd ) , ’ pllr】p0se f ohits aper psi to sudty he quetstion,the weihtged we define he genertalized Money space on R“x E as fol— neq.-!iifis feor the operators in Money spaces are ob— lowing: tained,and the characterizations for non—weihtged in. equality of maximal operator are also obtained.Some work (R“x E, )={fE比( x E): n tihis directi0n was d0Ile iIl[1, ur I℃sults既tend the ll ’ ( )<∞}; : When R“x E=R“, ( ,t)=w( )dx,we may t the generalized Money space on ones in these papers.Throughout this paper,C’s will de— note positive constants,which may have diferent values in each line XE denotes the chareterisite fnctuion of the set E. ( , )={ ∈比( ): sup—。‘南‘ .,)I y)IPw(y)dy) =IIfII (”)<∞}・ if (r)= , >o,then , = 一,which is classical Let E be a set,suppose we have topological structure n tihe Cartesian product x E. Morrey sacpe(see[6]). Let f e a auy ibntegrable function on ,we de— ifne the generalized maximal operator 8s folowing: ,、, Let 0 be a set function mapping the balls in R“into he Bortel sets in R“x E and satisfy. ,(i)If Bl,B2 aIe bails in R“with Bl n B2= ,then (1. (肿t)= ,面1 I y)I dy( ) ×E; Received dat ̄:20O1—04—02 niogtat ̄y:LIU Lan—a ̄,(1961一)。male,Doctor,h 踟 est =(舻)I/P for l≤p<∞. 维普资讯 http://www.cqvip.com Journal of Changde Teachers University(Natural Science Ediiton) When R x E=R ,0(B)=B,t=0,that ( , fE L1(R ,ttJ); 0)=Mf(x)is the Hardy Littlewood maximal operator. (2) :Lv(R ,ttJ)一LP(R ×E,卢),1<P≤P0, Definition 1.Let ttJ be a weight function on R and卢 htat is eb a Borel Hle_a re on R ×E.suppose that T is a linear l ll lLe(R" E,口)≤C II f II,( , ),for fE Le(Rn, operator mapp吨the functions on R into ones on R x ttJ). E,and (1)T is bounded from LPo( ,ttJ)into 0(R × E,卢)wiht(ttJ,卢)∈CI(0),that is First,we prove several technical lelllnl1f. [emma 1.Let 1≤D≤2 ,then ‘  ̄Cto( …, ER , (r1)/ (r2)≤cd/d, . where 1<P0≤∞; for any 0<r2<r1. (2)There exists a function K on R x R ×E\ [emma 2.Let(ttJ,卢)∈Cl(0),1≤D<2 ,for a {( , ,t): ∈R ,t∈E}such that locally integrable function g on R x E,let l I g(x,Y,t)I du(y)<∞,( ,t) 0(2B), g*( )= J )I g(Y,t)I dlf(y,t) nad for hTen,for 1≤P<∞, fE L ( )with supple_B=B(Y ,r),the following }lolds: J I )I Pz;< ( ))( )d ≤ (r)I If ll ,t)=l ( ,Y,t) y)dy, ofr any ball B(x0,r) R andfE ’ (R ,ttJ). ( ,t) 0(2B), Lemma 3.Let g≥0 be a locally integrable function moreover,when( ,t) 0(2kB),yEB.we have on R x E and卢be Borel ineRsuFe on R x E,then I k(x,Y,t)一 ( ,Y ,t)I≤ (2一 )I 2kB I~,f0r nay k≥1, (1) ( )≤ ,f)∈ } hwere£: _+R is a increasing function nad J。£(t) 』 I f(川g ) t一 dt<∞.hTen we call T hte generalized singular inte一 ofr all >0: al operator. hWen R x E=R ,£(t)=t3,0< ≤1,T is non (2)J I 川)IPg(川) (川) —convolution Calderon Zygmund operator(see[2]). ≤cJ I )I Pg ( )d , We recall hte following hteorem(see[2][3][7]). fl0r all 1<P<∞. .I1Ile0舢A.Let 1<P<∞,(ttJ,卢)∈CI(0),then Lemma 4.Let T be the generalized si,cular integral (1)卢({( ,t)∈Rn×E: ,£)> })≤ operator nad卢be Borel nleas1.1l ̄on Rn x E,then C2 J I )I ot( )d ,for all >0 nad (1) ,f)∈ )I> }g(川) ( )≤ fE L (R ,w); C2一 J I厂( )I g ( )d , (2) : ( ,ttJ)一 ( ×E,卢),that is fl0r all >0;and gI>0 on R x E; II II,( E.口)≤C II厂II,( , (2)J E l rf( )IPg(川) (川) for allfE LP( ,ttJ). .I1Ile0舢B.Let T be the generahzed singular inte一 ≤cJ l )I Pg ( ) ,P<∞・ operator,then,for(ttJ,卢)∈CI(0),we have f0r all 1<P≤Po and g≥0 on R ×E. (1)卢({( ,t)∈R x E:I rf( ,t)I> })≤ Proof of Lemma 1.Let 2kr2< l<2 2,hwere integer k≥0,then by the doubliIlg condition of ,we cA J I )I ot( )d ,for all >0 nad hav 维普资讯 http://www.cqvip.com LIU l_an—zhe Weighted Inequalities for Generalized Maxi珈 N。~ arId SingIllar Int昭 O嘣al0巧in cene M0 19 (r1)≤ (2 r2)≤Dk ≤2“‘ (r2) (b)A similar argument as(a)by using I.emma 3 (2)and I.emma 2,we can obtain(b). This completes the proof of TheoremI. If ;1.we can get (r2)≤2“(rl/r2) (r2) which yields the conclution of the lemma・ ProofofIamama 2.By( , )∈Cl(0)and 1≤D <2“,we n J I )I 文毗 ))( ) =J ( )I )I 文 ( ( )d + J +lB(xI f(训 r))(舢 o,r ( )≤c[ I )I ( )d + )∑k=02叫 )I )I ( ≤c∑2一 (2川r)ll ) ( ) ≤c∑(2一 ) (r)ll )ll . ( ) ≤ (r)l l・ ( ) Proof of Lemma 3.Let g( ,t)dfl(x,t)=da( , t),g ( )=w(x),then it is obvious.that( ,口)∈Cl (0)and thus by Theorem A,we get the conclution of I.emma 3. ProofofIamama 4.Similar to I.emma 3,we can get the conclution of I.emma 4 by using Theorem B. Now,we call get. Theorelll 1.Let 1≤D<2“,(Io,, )∈Cl(0),then (a)卢({( ,t)∈ ( ( 0,r)):"Mef(x,t)> }) ≤CA|P ll ・ ( ) (r0) for all f6 LP, (R“,Io,),1≤P<∞, >0 and ball B(x0,r) R“; (b)ll l l・ (卢)≤C II f II ・ ( for all f6 LP' (R“, )and 1≤q<P<∞. Proof.a)Fix a ball B=B(xo,ro) R.Taking g( ,t)=XO(B)( ,t)in I_emma 3(1)and by using Lemm2,we 曲 (I(x,t)∈ ( :~MJ(x,t)> }) =J , Az口( )( ,t)dlf( ,t) ≤CA呻J I )I Pxo(  )( )d ≤CA一 (r0)ll厂ll ・ ( ) TllleOl-elll 2.Let 1≤D≤2“,then the following state— ments are equivalent: (a) :Lp, (R“)一 ・ (R“×E,卢), for 1≤q<P<o0; (b)p({(,,,t)∈O(B(x,r)): ,,,t)> }) ≤ 一 (r)I If II ・ , for 1≤q<P<∞and ball B( ,r) R“, >0; c) is a Carleson Il1easu ,that is,for any ball B , (0(B))≤CIBI. Proof.It is obvious that(a) (b). (b) (c).Fix a ball B=B( 0, 0). for( ,t)∈0(B),we have )≥( )J I ),)I dy) , Takingf=z ,then z ( ,t)> 1,so that(b)im— plies that B(0(B))≤ ({( ,t)∈0(B): "MqX ( ,t)> I}) ≤ (ro)l lZ II = ( su p。(南k ),) ≤ ( + ≥r0 \ up( 蔓 ], Further, ( 毋 )≤ / I B l  ̄ ≤I B I/ (ro), and ( )≤s up( ) ≤C I B I/ (ro) by Lemma 1,thus (0(B))≤C I B I. (c) (a).Fix a ball B= ( o, o). ForfE ’ (R“),put )= )z ( )+f(x)XBc( )=g( )+^( ) Taking 0<e<1 so that 1<pe/q.smce 维普资讯 http://www.cqvip.com Journal ot"Chan ̄e Teachers tlniverr.Cy(Natural Science Edilion) )I p≤ )( )pdp+ )( )pd =I+II, We gain,by HSlder inequality and Theorem A, I≤cJ咖)( ) ≤ )( ) ≤cj I )I d ≤cp(r0)IIfII E,・ ; For II,let( ,f)∈ ( since supp h Bc,We obtain ( )≤ (肋‘面1 k.r)I^(,,) ,,) ≤≤  ∈ rsu—p (n‘ k I而 。,)。 , ,y,  。 。 ≤c up Il f ll ≤c b L舶mla 1,SO tIlat II≤ (ro)p( ( ))IIfII ・,/IBI ≤ (to)IIfll ・,; thm II ll 卢)≤C IIfll The proof of the Theorem is complete. 'IlleOl ̄ln 3.Let be the generalized singular inte— g瞄d ̄emtor,1≤D<2 and( ,』9)∈Ct(O),then (a)p({( ,t)∈0(8):I ,t)I>A}) ≤C,I一。 (to)ll ・,( ), for,∈L1. ( , ),A>0 and ball B(xo,I"0) ; (b)II II ・,( )≤C IIfII ・,( ), ,∈ ’ ( , ),1<p≤po,P<∞. Pm0f.(a).Fix a ball B=B(XO,1"0) ,and takillg g= 口( )in Iemr ̄4(1)and by using LeIIⅡTla 2, We get J9({( ,t)∈ ( ):I ,t)I>A}) J IXo( ) ≤C,II1J I )I Xo(  ( )d ≤C,t一 (r0)ll ・,( ). (b)A similar argt ̄ent as(a)by us k釉IIIa 4(2) and Iemma 2,We get(b). If (r)=,,We write ・ = 一. Coml ̄ry1.Let 0< <,l,(tl,,p)∈Cl( ),then (a).ForfE ’ ( , ),1≤p<∞,A>0 and B=B(X0,1"0)cR ,We have _p({( ,I)∈ ( ): ,I)>A}) ≤121一 圬Il ・。( ); (b).ForfE ’ ( , ),1≤g<P<∞,we have I l l.a(卢)≤C IIYll ,a( ) Corol ̄2.Let be the generalized s ime— g啊d operator,0< <,l,( ,p)∈Cl(0),then (a).ForfEL ・ (R , ),A>0 and B=B(X0,1"0) R,We have p({( ,t)∈0(B):I ,r)I>A}) ≤C,I 圬l l・。( ); (b)ForfE ’ ( , ),1<P<Po,P<∞, we have II I ・a( )≤C IIfII ・a( ) Remu ̄rk.The resdt ̄in this pllper aIe a geⅢ硼山za- don ofthe Iesults in[1][4][5],where the special case ×E=R , =dx, ;1 wl舾c0nsidered. 口 目 S 1 F.C_N ̄-em and lV1.Fm ̄ea.Money印d嘲arld HaIdy— IAttle ̄t ma】【i咖l如r [J].Rend.Mm.,198"/,(7): 273—279. 2 J.G ̄-ia—Cuer ̄and J.L。 ̄lbiO de Fr ̄eia.w I啪ninequaliites arld Ie 吨[J].North—Hdl ̄t, 1985. 3 Iiu .w啦 vec valI】edi desforge ̄-al- ized幽lgIllar iI 叩哪l0fs[J].N0rIlle略【锄№ItlI.J., 1994。10(3):366—371. 4 T日 Mi ,B0哪曲 嘲ot"80lne calssic 0p On ge响 lVI ̄ey sp艄[c].Harmonic Ialysis,Pro- 傥ediIl铲ot"a伽 _嗍lce held in Se ,Japan,1990,183 —1119. 5 J.Pee ̄e.On。0mrd岫0l1 0pera姗h 一一叩岫-ces invm ̄t[J].Ann,M毗.PIlra. .,1966,72:295—304. 6 J.Pee ̄e.OnthetIlec ot"/2一一spaces[J].J.Fu邶.AIla1. 1969,4:71—87. 7 F.J.Ruiz and J.L.Torrea.weigll自ed咖m唧la】i esfor a general胧 咖l叩响 [J]. ,Mm,191111,26.327— 3413. (To P.24) 

因篇幅问题不能全部显示,请点此查看更多更全内容

Top