您的当前位置:首页高熵合金的微观组织和性能

高熵合金的微观组织和性能

来源:锐游网
ProgressinMaterialsScience61(2014)1–93ContentslistsavailableatScienceDirectProgressinMaterialsSciencejournalhomepage:www.elsevier.com/locate/pmatsciMicrostructuresandpropertiesofhigh-entropyalloys

YongZhanga,⇑,TingTingZuoa,ZhiTangb,MichaelC.Gaoc,d,KarinA.Dahmene,PeterK.Liawb,ZhaoPingLuaaStateKeyLaboratoryforAdvancedMetalsandMaterials,UniversityofScienceandTechnologyBeijing,Beijing100083,ChinaDepartmentofMaterialsScienceandEngineering,TheUniversityofTennessee,Knoxville,TN37996,USAcNationalEnergyTechnologyLaboratory,1450QueenAveSW,Albany,OR97321,USAdURSCorporation,POBox1959,Albany,OR97321-2198,USAeDepartmentofPhysics,UniversityofIllinoisatUrbana-Champaign,1110WestGreenStreet,Urbana,IL61801-3080,USAbarticleinfoabstract

Thispaperreviewstherecentresearchanddevelopmentofhigh-entropyalloys(HEAs).HEAsarelooselydefinedassolidsolutionalloysthatcontainmorethanfiveprincipalelementsinequalornearequalatomicpercent(at.%).Theconceptofhighentropyintroducesanewpathofdevelopingadvancedmaterialswithuniqueproperties,whichcannotbeachievedbytheconventionalmicro-alloyingapproachbasedononlyonedominantelement.Uptodate,manyHEAswithpromisingpropertieshavebeenreported,e.g.,highwear-resistantHEAs,Co1.5CrFeNi1.5TiandAl0.2Co1.5CrFeNi1.5Tialloys;high-strengthbody-centered-cubic(BCC)AlCoCrFeNiHEAsatroomtemperature,andNbMoTaVHEAatelevatedtemperatures.Furthermore,thegeneralcorrosionresis-tanceoftheCu0.5NiAlCoCrFeSiHEAismuchbetterthanthatoftheconventional304-stainlesssteel.ThispaperfirstreviewsHEAfor-mationinrelationtothermodynamics,kinetics,andprocessing.Physical,magnetic,chemical,andmechanicalpropertiesarethendiscussed.Greatdetailsareprovidedontheplasticdeformation,fracture,andmagnetizationfromtheperspectivesofcracklingnoiseandBarkhausennoisemeasurements,andtheanalysisofser-rationsonstress–straincurvesatspecificstrainratesortestingtemperatures,aswellastheserrationsofthemagnetizationhysteresisloops.Thecomparisonbetweenconventionalandhigh-entropybulkmetallicglassesisanalyzedfromtheviewpointsofeutecticcomposition,denseatomicpacking,andentropyofArticlehistory:Received26September2013Accepted8October2013Availableonline1November2013⇑Correspondingauthor.Tel.:+8601062333073;fax:+8601062333447.E-mailaddress:drzhangy@ustb.edu.cn(Y.Zhang).0079-6425/$-seefrontmatterÓ2013ElsevierLtd.Allrightsreserved.http://dx.doi.org/10.1016/j.pmatsci.2013.10.0012Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93mixing.Glassformingabilityandplasticpropertiesofhigh-entropybulkmetallicglassesarealsodiscussed.Modelingtech-niquesapplicabletoHEAsareintroducedanddiscussed,suchasabinitiomoleculardynamicssimulationsandCALPHADmodeling.Finally,futuredevelopmentsandpotentialnewresearchdirectionsforHEAsareproposed.Ó2013ElsevierLtd.Allrightsreserved.Contents1.Introduction..........................................................................31.1.Fourcoreeffects.................................................................41.1.1.High-entropyeffect.......................................................41.1.2.Sluggishdiffusioneffect....................................................51.1.3.Severelattice-distortioneffect...............................................61.1.4.Cocktaileffect............................................................71.2.Keyresearchtopics...............................................................91.2.1.Mechanicalpropertiescomparedwithotheralloys.............................101.2.2.Underlyingmechanismsformechanicalproperties.............................111.2.3.AlloydesignandpreparationforHEAs.......................................111.2.4.TheoreticalsimulationsforHEAs............................................12Thermodynamics.....................................................................122.1.Entropy.......................................................................132.2.Thermodynamicconsiderationsofphaseformation....................................152.3.MicrostructuresofHEAs..........................................................18Kineticsandalloypreparation...........................................................233.1.Preparationfromtheliquidstate...................................................243.2.Preparationfromthesolidstate....................................................293.3.Preparationfromthegasstate.....................................................303.4.Electrochemicalpreparation.......................................................34Properties...........................................................................344.1.Mechanicalbehavior.............................................................344.1.1.Mechanicalbehavioratroomtemperature....................................354.1.2.Mechanicalbehavioratelevatedtemperatures................................384.1.3.Mechanicalbehavioratcryogenictemperatures...............................454.1.4.Fatiguebehavior.........................................................464.1.5.Wearbehavior..........................................................484.1.6.Summary...............................................................494.2.Physicalbehavior................................................................504.3.Biomedical,chemicalandotherbehaviors...........................................53Serrationsanddeformationmechanisms..................................................555.1.SerrationsforHEAs..............................................................565.2.BarkhausennoiseforHEAs........................................................585.3.ModelingtheSerrationsofHEAs...................................................615.4.DeformationmechanismsforHEAs.................................................66Glassformationinhigh-entropyalloys....................................................676.1.High-entropyeffectsonglassformation.............................................676.1.1.Thebestglassformerislocatedattheeutecticcompositions....................676.1.2.Thebestglassformeristhecompositionwithdenseatomicpacking..............676.1.3.Thebestglassformerhashighentropyofmixing..............................676.2.GFAforHEAs...................................................................686.3.Propertiesofhigh-entropyBMGs...................................................70Modelingandsimulations..............................................................727.1.DFTcalculations................................................................737.2.AIMDsimulations...............................................................757.3.CALPHADmodeling..............................................................80Futuredevelopmentandresearch........................................................812.3.4.5.6.7.8.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9339.8.1.FundamentalunderstandingofHEAs................................................8.2.ProcessingandcharacterizationofHEAs.............................................8.3.ApplicationsofHEAs.............................................................Summary...........................................................................Disclaimer..........................................................................Acknowledgements...................................................................References..........................................................................828383848585851.IntroductionRecently,high-entropyalloys(HEAs)haveattractedincreasingattentionsbecauseoftheiruniquecompositions,microstructures,andadjustableproperties[1–31].Theyarelooselydefinedassolidsolutionalloysthatcontainmorethanfiveprincipalelementsinequalornearequalatomicpercent(at.%)[32].Normally,theatomicfractionofeachcomponentisgreaterthan5at.%.Themulti-compo-nentequi-molaralloysshouldbelocatedatthecenterofamulti-componentphasediagram,andtheirconfigurationentropyofmixingreachesitsmaximum(RLnN;RisthegasconstantandNthenumberofcomponentinthesystem)forasolutionphase.ThesealloysaredefinedasHEAsbyYehetal.[2],andnamedbyCantoretal.[1,33]asmulti-componentalloys.Bothrefertothesameconcept.Therearealsosomeothernames,suchasmulti-principal-elementsalloys,equi-molaralloys,equi-atomicratioalloys,substitutionalalloys,andmulti-componentalloys.Cantoretal.[1,33]pointedoutthataconventionalalloydevelopmentstrategyleadstoanenor-mousamountofknowledgeaboutalloysbasedononeortwocomponents,butlittleornoknowledgeaboutalloyscontainingseveralmaincomponentsinnear-equalproportions.Theoreticalandexperi-mentalworksontheoccurrence,structure,andpropertiesofcrystallinephaseshavebeenrestrictedtoalloysbasedononeortwomaincomponents.Thus,theinformationandunderstandingarehighlydevelopedonalloysclosetothecornersandedgesofamulti-componentphasediagram,withmuchlessknowledgeaboutalloyslocatedatthecenterofthephasediagram,asshownschematicallyforternaryandquaternaryalloysystemsinFig.1.1.Thisimbalanceissignificantforternaryalloysbutbecomesrapidlymuchmorepronouncedasthenumberofcomponentsincreases.Formostquater-naryandotherhigher-ordersystems,informationaboutalloysatthecenterofthephasediagramisvirtuallynonexistentexceptthoseHEAsystemsthathavebeenreportedveryrecently.Inthe1990s,researchersbegantoexploreformetallicalloyswithsuper-highglass-formingability(GFA).Greer[29]proposedaconfusionprinciple,whichstatesthatthemoreelementsinvolved,thelowerthechancethatthealloycanselectviablecrystalstructures,andthusthegreaterthechanceofglassformation.Maetal.[3]foundthatthebestglassformerisnotexactlyattheeutecticcompo-sition,andhasashifttowardsthehigh-entropyzoneinthephasediagram.Recently,Takeuchietal.[34]reportedahigh-entropybulkmetallicglass(BMG),whichcanhaveacriticalsizeover10mm.Zhaoetal.[35]andGaoetal.[36]reportedahigh-entropyBMG,whichcanbeplasticallydeformedatroomtemperature.However,forsomeHEAs,theirGFAisratherlow,andtheycanonlyformFig.1.1.Schematicternaryandquaternaryalloysystems,showingregionsofthephasediagramthatarerelativelywellknown(green)nearthecornersandrelativelylesswellknown(white)nearthecenter[33].4Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93solid-solutionseventhoughthecoolingrateisveryhigh,e.g.,alloysofCuCoNiCrAlFeTiV,FeCrMnNiCo,CoCrFeNiCu,AlCoCrFeNi,NbMoTaWV,etc.[1,2,12–14].Theyieldstrengthofthebody-centeredcubic(BCC)HEAscanberatherhigh[12],usuallycompa-rabletoBMGs[12].Moreover,thehighstrengthcanbekeptupto800KorhigherforsomeHEAsbasedon3dtransitionmetals[14].Incontrast,BMGscanonlykeeptheirhighstrengthbelowtheirglass-transitiontemperature.1.1.FourcoreeffectsBeingdifferentfromtheconventionalalloys,compositionsinHEAsarecomplexduetotheequi-molarconcentrationofeachcomponent.Yeh[37]summarizedmainlyfourcoreeffectsforHEAs,thatis:(1)Thermodynamics:high-entropyeffects;(2)Kinetics:sluggishdiffusion;(3)Structures:severelatticedistortion;and(4)Properties:cocktaileffects.Wewilldiscussthesefourcoreeffectsseparately.1.1.1.High-entropyeffectThehigh-entropyeffects,whichtendtostabilizethehigh-entropyphases,e.g.,solid-solutionphases,werefirstlyproposedbyYeh[9].Theeffectswereverycounterintuitivebecauseitwasex-pectedthatintermetalliccompoundphasesmayformforthoseequi-ornearequi-atomicalloycom-positionswhicharelocatedatthecenterofthephasediagrams(forexample,amonocliniccompoundAlCeCoformsinthecenterofAl–Ce–Cosystem[38]).AccordingtotheGibbsphaserule,thenumberofphases(P)inagivenalloyatconstantpressureinequilibriumconditionis:P¼Cþ1ÀFð1-1ÞwhereCisthenumberofcomponentsandFisthemaximumnumberofthermodynamicdegreesoffreedominthesystem.Inthecaseofa6-componentsystematgivenpressure,onemightexpectamaximumof7equilibriumphasesataninvariantreaction.However,tooursurprise,HEAsformso-lid-solutionphasesratherthanintermetallicphases[1,2,4,17].Thisisnottosaythatallmulti-compo-nentsinequalmolarratiowillformsolidsolutionphasesatthecenterofthephasediagram.Infact,onlycarefullychosencompositionsthatsatisfytheHEA-formationcriteriawillformsolidsolutionsinsteadofintermetalliccompounds.Thesolid-solutionphase,accordingtotheclassicalphysical-metallurgytheory,isalsocalledater-minalsolidsolution.Thesolid-solutionphaseisbasedononeelement,whichiscalledthesolvent,andcontainsotherminorelements,whicharecalledthesolutes.InHEAs,itisverydifficulttodifferentiatethesolventfromthesolutebecauseoftheirequi-molarportions.Manyresearchersreportedthatthemulti-principal-elementalloyscanonlyformsimplephasesofbody-centered-cubic(BCC)orface-cen-tered-cubic(FCC)solidsolutions,andthenumberofphasesformedismuchfewerthanthemaximumnumberofphasesthattheGibbsphaseruleallows[9,23].Thisfeaturealsoindicatesthatthehighen-tropyofthealloystendstoexpandthesolutionlimitsbetweentheelements,whichmayfurthercon-firmthehigh-entropyeffects.Thehigh-entropyeffectismainlyusedtoexplainthemulti-principal-elementsolidsolution.Accordingtothemaximumentropyproductionprinciple(MEPP)[39],highentropytendstostabilizethehigh-entropyphases,i.e.,solid-solutionphases,ratherthanintermetallicphases.Intermetallicsareusuallyorderedphaseswithlowerconfigurationalentropy.Forstoichiometricintermetalliccom-pounds,theirconfigurationalentropyiszero.WhetheraHEAofsinglesolidsolutionphaseisinitsequilibriumhasbeenquestionedinthesci-entificcommunity.Therehavebeenaccumulatedevidencestoshowthatthehighentropyofmixingtrulyextendsthesolubilitylimitsofsolidsolution.Forexample,Lucasetal.[40]recentlyreportedab-senceoflong-rangechemicalorderinginequi-molarFeCoCrNialloythatformsadisorderedFCCstruc-ture.Ontheotherhand,itwasreportedthatsomeequi-atomiccompositionssuchasAlCoCrCuFeNicontainseveralphasesofdifferentcompositionswhencoolingslowlyfromthemelt[15],andthusitiscontroversialwhethertheycanbestillclassifiedasHEA.TheempiricalrulesinguidingHEAfor-mationareaddressedinSection2,whichincludesatomicsizedifferenceandheatofmixing.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9351.1.2.SluggishdiffusioneffectThesluggishdiffusioneffecthereiscomparedwiththatoftheconventionalalloysratherthanthebulk-glass-formingalloys.Recently,Yeh[9]studiedthevacancyformationandthecompositionpar-titioninHEAs,andcomparedthediffusioncoefficientsfortheelementsinpuremetals,stainlesssteels,andHEAs,andfoundthattheorderofdiffusionratesinthethreetypesofalloysystemsisshownbe-low:HEAsAtomicradiusofsomeselectedelements[88,89].ElementONCBSPBeSiGeFeNiCrCoCuVMnSnNdRadius(nm)0.073000.075000.077300.082000.102000.106000.112800.115300.124000.124120.124590.124910.125100.127800.131600.135000.162000.16400ElementScMoWRePdPtGaZnSeUNbTaAlAuAgTiGdCeRadius(nm)0.164100.136260.136700.137500.137540.138700.139200.139450.140000.142000.142900.143000.143170.144200.144470.146150.180130.18247ElementMgZrCaSnLaNdScPrInMgLiPbThGdYHfSmRadius(nm)0.160130.160250.197600.162000.187900.164000.164100.165000.165900.160130.151940.174970.180000.180130.180150.157750.1810015Fig.2.3.RelationshipbetweenDelta,d(heredisamplifiedby100timesforconvenience)andDHmixinsomeHEAs(S:indicatesthealloycontainingonlysolidsolutions;C:indicatesthealloycontainingintermetallics;S1–S8:Ref.[2];9:CrFeCoNiAlCu0.25,10:VCuFeCoNi,11:Al0.5CrFeCoNi,12:Ti2CrCuFeCoNi,13:AlTiVYZr,14:ZrTiVCuNiBe[93]).However,theaboveanalysisonlyconsidersrandomsolidsolution.Fortherealsolution,theentro-pyofmixingcanbemuchmorecomplicatedsincetheexcessentropyofmixingneedstobeconsid-ered.Theexcessentropyofmixingcomesfromexistenceofchemicalorderingorsegregation,andvibrational,magnetic,andelectroniccontributions.Itcanbenegativeorpositive,dependingoneachindividualsystem,asdetailedinareviewarticlebyOriani[87].2.2.ThermodynamicconsiderationsofphaseformationForalloydevelopmentofHEAs,achallengingquestionishowtopredictphasestability(e.g.,thenumberofequilibriumphasesandthemolefractions)asafunctionoftemperatureandcomposition.16Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.2.4.RelationshipbetweenDHmixanddvaluesofsomeHEAsystems[94].Fig.2.5.Phase-formationmapbasedontheXanddforthemulti-componentalloys.Fortheformationofsolid-solutions,X>1.1andd<6.6%.ThezonemarkedBmeansthezonemainlyformsBMGs,andmarkedImainlyformsintermetallicscompounds,alsothereisatransitionzonewhichformsboththerandomsolidsolutionandtheintermetalliccompound[28].AccordingtotheHume-Rutheryrule,theatomic-sizedifference(d)andtheenthalpyofmixing(DHmix)aretwodominantfactors.ForaHEA,thetwoparametersaredefinedasfollows[88,89]:vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi0u, !!2uXNXuN@d¼ti¼1ci1Àricirii¼1ð2-7Þð2-8ÞDHmix¼NXi¼1;i–j4DHmixABcicjY.Zhangetal./ProgressinMaterialsScience61(2014)1–9317whereriistheatomicradiusoftheithcomponent,andDHmixABistheenthalpyofmixingforthebinaryAandBelements.Bysummarizingthedatafromtheliterature,adiagramwithDHmix$dcanbeplotted,asshowninFig.2.2[17].Itisknownthattheatomicsizeofanelementisaffectedbythesurroundingatoms.HeretheGoldschmidtatomicsizewhichistheatomicsizewhenthecoordinationnumberis12,isused.ThetypicaldataformostelementsarelistedinTable1[90,91].Fortheenthalpyofmixing,onlythebinarydataisavailable.Eq.(2-8)canbeemployedtoevaluatetheenthalpyofmixingforthemulti-componentsalloysbythebinarydata,andsometypicaldataforthebinaryenthalpyofmixingareavailablefromRefs.[88,92].Fig.2.2showsthatDHmixroughlydecreasestomorenegativevalueswiththeincreaseofd.Fortherandomsolidsolutions,theDHmixisintherangefromÀ15to5kJ/mol,whiledisintherangefrom1%to5%.Renetal.[93]alsosummarizedasimilarDHmix$dplotwiththeirresults,asshowninFig.2.3whichcorrelatesverywellwithFig.2.2.ZhangandFu[94]employedvariousHEAsystemstoexplorethequantitativecriterionforphaseformation.ThevaluesofDSmix,DHmix,anddfortheseHEAsystemswerealsocalculatedfromEqs.(2-4),(2-7),and(2-8)andplottedinFig.2.4.ItisclearthatCoCrFeNiCu,CoCrFeNiMn,andCoCrFeNiVHEAscanformsimplesolid-solutionphases.TheDHmixanddvaluesofthesealloysapproachzeroastheirpositionsarelocatedattheupper-leftcornerofFig.2.4.However,theotheralloyswithDHmixanddvaluesbeyondtheupper-leftcornercontainnotonlysolid-solutionphasesbutalsointermetalliccompounds.Therefore,criterionforsimplesolidsolutionsinHEAsshouldbetheDHmixanddvaluesfallingintotheupper-leftdistrictinFig.2.4underthefulfillmentofhighentropyofmixing(DSmix=1.61R).Tobespecific,thequantitativecriterionfortheformationofsimplesolidsolutionsis:DSmix>13:38J=Kmol;À10kJ=mol1meansthattheeffectofthemixingentropyisgreaterthanthatoftheenthalpyofmixingatthemeltingtemperature,andthehigh-entropyphasetendstoform.Togiveadefinitionforthehighentropy,wefirstneedabenchmark:eitherthefusionentropyofthemetallicalloysortheenthalpyofmixingatthemeltingpoint.Yehetal.[2]selectedthefusionentropyandtheentropyofmixingforthefiveelementsatanequi-atomicratioisgreaterthanthefusionentropy.Theessenceofthiscriterion,asshowninEq.(2-9),isthathigh-entropysolidsolutionphasemayformaslongasX>1issatisfied,whichimpliesthattherequirementoffiveprincipalelementstoformHEAsmaynotbenecessary.Theoret-icallyspeaking,threeelementsmightformHEAs.Themoreelementsinanequi-molarHEA,thehigherentropyofmixingis.However,thecontentofeachelementshouldbehigherthan5at.%.TherelationbetweenXanddisshowninFig.2.5.Theplotsuggeststhattherequirementsforthesolid-solutionformationareXP1.1andd66.6%.Moreover,Xanddobeyahyperbolicrelation,whichindicatesthatdÂLnX=constant[28].2.3.MicrostructuresofHEAsHume-Rothery[95]generalizedseveralrulesonsubstitutionalsolidsolutionsinalloysystems,including:(1)thedifferenceintheatomicsizebetweenthesoluteandsolventatomsmustbelessthan15%,(2)thecrystalstructuresofthesoluteandsolventmustmatch,(3)therearethesamevalencestatesbetweenthesolventandsolute,and(4)thesoluteandsolventshouldhavesimilarelectroneg-ativity.Forgenerations,Hume-Rotheryruleshavebeenusedinthetraditionalalloyingdesign.Gener-ally,asolidsolutionisoftenobservedwhenthetwoelements(generallymetals)involvedarefromthesamefamilyintheperiodictable(i.e.,thesamecolumn).Conversely,achemicalcompoundformswhentheHume-Rotheryrulesarenotsatisfied.MindthatHume-Rotheryrulesonlyaddresssubstitu-tionalsolidsolution.Thesolutemaybeincorporatedintothesolventcrystallatticesubstitutionally,byreplacingasolventatominthelattice,orinterstitially,byfittingintothespacebetweensolventY.Zhangetal./ProgressinMaterialsScience61(2014)1–9319Fig.2.8.Therelationshipamongthemicrostructure,NieqandCreqofCuCrFeNiMnalloysystem[93].Fig.2.9.X-raydiffractionpatternsforAlxCrCuFeNi2alloys(x=0.2–1.2)[97].atoms.Bothtypesofsolidsolutionsaffectthepropertiesofthematerialbydistortingthecrystallatticeanddisruptingthephysicalandelectronichomogeneityofthesolventmaterial.ThebinaryCu–Niphasediagram,asshowninFig.2.6,isanexampleofHume-Rotheryrulesoffor-mationofanisomorphoussolidsolution[96].All4rulesaresatisfiedinthissimplecase.ThecaseofHEAsseemstobeanexceptiontotheHume-Rotheryrules.AllHEAsreportedhaveaminimumof4–5components,andtheelementshaveamixtureofsimpleFCC,BCC,andHCPstructures.Forexample,theFCCCoCrCuFeNiHEAcontainsaBCCmetal,Cr,whilebothCuandNiareFCC.Feundergoesstruc-turalchangesfromBCCtoFCCat912°CandFCCtoBCCagainat1394°C,andCotransformstoFCCfromHCPat422°C.Furthermore,Cralsohasmuchlowerelectronegativitythantherestoftheele-mentsinthealloy.Consequently,therearefewelementsintheperiodictablethatissolubleinCrtoanappreciableamountexceptV.However,formationofaFCCsolidsolutionphasewasobservedandformationofintermetallicrphases(Co2Cr3anda-CoFe,PearsonsymboloftP30)wasdepressedintheCoCrCuFeNiandCoCrFeNiHEAs.AnotherexampleistheformationofaBCCsolidsolutionphaseintheAl3CoCrCuFeNiHEA.Inthiscase,theelement,Al,hasanFCCstructure.Therefore,itistemptingtostatethatthehighentropyofmixingcanoverweightheHume-Rotheryrulesandperhapsisthemostimportantparameterinthesolid-solutionformationthathasbeenoverlookedinthetraditionalphysicalmetallurgy.Tilltoday,allreportedHEAshaveeithertheFCCorBCCstructure,andnoHCPstructuredHEAs,asshowninFig.2.7[11].ThisobservationisnotsosurprisingbecausemostelementspreferaBCCorFCCstructure.Amongtransitionmetals,thereareatotalof9elementsthathaveaHCPstructureatroom20Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.2.10.RelationshipbetweenVECandtheFCC,BCCphasestabilityforHEAsystems.Noteonthelegend:greencolorforsoleFCCphases;redcolorforsoleBCCphase;yellowcolorformixes,FCCandBCCphases[97].temperature,i.e.Sc,Ti,Zr,Hf,Co,Tc,Ru,Re,Os,CdandZnwiththefirstfivetransformingtoBCCathighertemperature.TcisaradioactiveelementwhileRe,RuandOsareextremelyexpensiveele-ments.CdandZnbothhaveaverylowmeltingpointandhighvaporpressure.Amongnon-transitionmetals,MgprefersaHCPstructurewhileBeundergoesHCP?BCCtransformationatT=1270°C.WhilethevastmajorityofrareearthelementspreferaHCPordoubleHCPstructureatroomtemper-ature,mostofthemtransformtoBCCatveryhightemperatures.Therefore,itislikelythatHEAsbasedonrareearthelementscanbeformedwithaHCPstructuregiventhat:(1)theyallhavesimilaratomicsizes;(2)theyallformisomorphousbinarysolidsolution.Renetal.[93]suggestedthatelementalinteractionscanaffectnotonlythedistributionofelementsindendrite(DR)andinter-dendrite(ID)regionsbutalsothemicrostructuresintheCuCrFeNiMnalloysystem.AlloyswithasingleFCCphasearealwaysrelatedtotheirhighcontentsofCu,Ni,andMn,whichissimilarinstainlesssteels.Accordingtothealloyingeffectofelementsonmicrostructuralcharacteristicsinstainlesssteels,elementscanbeclassifiedintotwotypes:oneisFCCstabilizer,suchasNi,Mn,Cu,CandN,andtheotherisBCCstabilizer,suchasCr,Mo,Si,andNb.TheNiequivalent(Nieq,byamassfraction)andCrequivalent(Creq,byamassfraction)areoftenusedtopredictthechangesofmicrostructuresinstainlesssteels:thehighertheNieq,theeasieritistoobtainanFCCstructure.Conversely,thehighertheCreq,theeasieritistoformaBCCstructure.Therefore,theten-dencyinformingFCCandBCCphasescanbeestimatedbymeansoftherelationshipbetweenNieqandCreqinHEAs.BasedontheexperienceandthedistinctcompositiondifferencebetweenstainlesssteelsandHEAs,theexpressionsofNieqandCreqaremodifiedproperlyasfollows[93]:Nieq¼Ni%þ0:5Mn%þ0:25Cu%Creq¼Cr%þFe%ð2-10Þð2-11ÞwhereNi%,Mn%,Cu%,Cr%,orFe%standsfortheatomicpercent(at.%)ofeachelement,asshowninFig.2.8.However,Coisawell-knownstrongFCCformer.OtherFCCformersthatarelessknownincludePd,Pt,Ir,andRh.OntheBCCformerside,mostrefractorymetalshaveaBCCstructureandtendtostabilizetheBCCstructure,and,consequently,HEAsofvariouselementalcombinationshavebeenreported,basedonrefractorymetals[14].Guoetal.[97]suggestedusingthevalenceelectronconcentration(VEC)topredicttheBCCandFCCstructuredsolidsolutionsofHEAs.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9321Fig.2.11.SchematicillustrationofBCCcrystalstructure:(a)perfectlattice(takeCrasexample);(b)distortedlatticecausedbyadditionalonecomponentwithdifferentatomicradius(takeaCr–Vsolidsolutionasexample);(c)seriousdistortedlatticecausedbymanykindsofdifferent-sizedatomsrandomlydistributedinthecrystallatticewiththesameprobabilitytooccupythelatticesitesinmulti-componentsolidsolutions[20].VEC¼XCiðVECiÞð2-12ÞhereCiistheatomicpercentoftheithelement,andVECiistheVECoftheithelement.Fig.2.9showstheX-raydiffraction(XRD)patternsofGuo’salloys(AlxCrCuFeNi2)[97].ItisseenthatwiththeincreaseoftheAlcontent,thephasestructureschangefromFCCtoBCCinAlxCrCuFeNi2alloys.Fig.2.10summarizedtherelationshipbetweenthestructureandVEC,andwecanseethatfortheBCC-structuredsolidsolution,VEC<6.8;whileforFCC,VEC>8[97].22Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.2.12.PredictedphasediagramofAlxCoCrCuFeNialloysystemwithdifferentaluminumcontents(xvalues).L:liquidphase.ThephasetransitiontemperaturesofthealloysweremeasuredbyDTA(temperaturelimitofmeasurement:1400°C)andindicatedasblacksoliddotsinthefigure[45].Fig.3.1.Aschematicdiagramofthearcmeltingmethod[99].Zhangetal.[20]suggestedthatthephasechangefromtheFCCtoBCCintheTixCoCrFeNiCu1ÀyAlyalloysystemshouldbeduetotheatomic-levelstrainenergy,asshowninFig.2.11.AstheAlelementhasarelativelylargeratomicsize,theadditionoftheAlelementwillinducethehigheratomic-levelstress[73,74]inHEAswiththestructureofhigheratomic-packingefficiency(APE).TheHEAwithanY.Zhangetal./ProgressinMaterialsScience61(2014)1–9323FCCstructuregenerallyhashigherAPEthanthatwithaBCCstructure.WithmoreAladditions,theatomic-levelstresswillbeincreasedtoohightotolerate,andthus,resultinginatransitiontotheBCCstructurewithlowerAPE,whichwilldecreasethestrainenergyandreducetheGibbsfreeenergy.Tongetal.[45]plottedasimplephasediagramfortheAlxCoCrCuFeNialloy,aspresentedinFig.2.12,whichshowsthephasechangewiththevariationofAlcontentatdifferenttemperatures.Thephasediagramshowsaneutecticreactionat15at.%Al.InthelowerAlcontentregion(<15at.%),theprimaryphaseisanFCCphase.WhileinthehigherAlcontentregion(>15at.%),thepri-maryphasebecomesaBCCphase.WhentheAlcontentincreasestomorethan25at.%,theorderedB2phasedominates.3.KineticsandalloypreparationThermodynamics,asmentionedintheformersection,mainlyaddressesthestabilityofthestate,anddoesnotconcerntherate,time,androutes.Thekineticsinmaterialsscienceisdefinedasthepro-cessofthematerialstransitionfromonestatetoanother,withtime.Thereisalsoanotherterm,dynamics,whichismainlyusedformechanicalbehavior,andconventionallyrelatedtotheloadingspeedandtime.Thus,thekineticsforHEAsinthissectionwillfocusonthemobilityoftheelementsduringphasetransformations.Inanotherword,themobilityoftheparticlesinthealloyisequaltotheinverseoftheviscosity,g,ofthealloy,whichisrelatedtothediffusioncoefficient,D,bytheStokes–Einsteinequation[98]:D¼jT6pgcð3-1ÞEq.(3-1)isapplicableinthecaseoflowReynoldsnumbers,fordiffusionofsphericalparticlesthroughaliquid,whereDisthediffusionconstant,cistheradiusofadiffusingparticle,Tistheabsolutetem-Rperature,andj¼N,whereRisthegasconstant,andNisAvogadro’snumber.Thehighentropyofthealloyinitsliquidstatewillpotentiallyfacilitateformingthehigh-entropyphases.However,thekineticsplayaveryimportantroleforphaseformation.ThemicrostructuresofHEAscanbecontrolledbythecoolingrate,theprocessingroutesofthealloys,andplasticdeformationincombinationwithvariousheattreatment.Thus,theirpropertiescanbeoptimizedbycontrollingprocessingparameters.Fig.3.2.XRDpatternsofbothsplat-quenchedandas-castequi-atomicAlCoCrCuFeNiHEA.Thesplat-quenchedHEAshowsthepresenceofaBCCphase(aBCC=2.87Å),whereastheas-castHEalloyindicatesthepresenceofoneBCC(aBCC=2.87Å)andtwoFCCphases.TwoFCCphasesareclearlyvisiblefromtwooverlappingpeaksshownintheinset,correspondingtothetwo{111}planeswithslightlydifferentlatticeparameters(aFCC1=3.59ÅandaFCC2=3.62Å)[15].24Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.3.3.Bright-fieldTEMimagesofas-castequiatomicAlCoCrCuFeNiHEalloy:(a)dendriteandinterdendriticregions;(b)microstructureofdendriticregionwithplate-likeprecipitatesorientedalongtheh110idirections.Thecorrespondingelectrondiffractionpatternofthe[001]zoneaxispresentedintheinsetexhibitsreflectionsoforderedBCC,B2structure(aBCC=2.88Å).ThecharactersA–DarepositionsoftheEDXmeasurements;(c)dendriticregionwithrhombohedron-shapedprecipitates(aFCC2=3.64Å).Thecorrespondingelectrondiffractionpatternoftheh110izoneaxisintheinsetdisplaysweaksuperlatticereflectionscorrespondingtoL12structure;(d)microstructureoftheinterdendriticregionandcorrespondingelectrondiffractionpatternoftheh112izoneaxis,showingweaksuperlatticereflectionscorrespondingtoL12structure(aFCC1=3.58Å)[15].Atpresent,typicalprocessingroutesforHEAscanbesummarizedaccordingtothestartingstatesforthealloypreparation,mainly(1)fromtheliquidstate,(2)fromthesolidstate,(3)fromthegasstate,and(4)fromelectrochemicalprocess.3.1.PreparationfromtheliquidstateApopularliquidprocessingmethodisarcmelting.ThetypicalfurnaceisshowninFig.3.1.Thetorchtemperatureofthearc-meltingfurnacecanbeveryhigh(>3000°C),andcanbecontrolledbyFig.3.4.SchematicrepresentationofphasesegregationobservedduringsolidificationofAlCoCrCuFeNiHEAbytwodifferentprocessingconditions:splatquenching(coolingrate106–107KsÀ1)andcasting(coolingrate10–20KsÀ1)[15].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9325adjustingtheelectricalpower.Hence,mostofthehigh-meltingelementscanbemixedintheirliquidstatebythiskindoffurnaces[99].However,forelementswithalowmeltingpoint,whichareeasytoevaporate,e.g.,Mg,Zn,andMn,thearc-meltingprocessmaynotbethebestchoice,becausethecom-positioncannotbepreciselycontrolled.Inthiscase,resistanceheatingorinductionheatingmaybemuchmoreappropriate.Singhetal.[15]carefullystudiedthedecompositionprocessoftheAlCoCrCuFeNiHEA,andtheyfoundthatahighcoolingratetendedtopromoteformationofasinglephase,aspresentedinFig.3.2.Fig.3.3showsthebright-fieldTEMimagesoftheas-castAlCoCrCuFeNiHEA.Fivephaseswerepresentintheas-castsample;theinterdendriticregionconsistingoftheCu-richphaseofanL12struc-ture(FCC1),dendritescontainingCu-richplate-likeprecipitatesoftheB2type,rhombohedron-shapedCu-richprecipitatesoftheL12type(FCC2),Al–Ni-richplates(B2),andCr–Fe-richinterplates(BCC).ThestructureofthesphericalCu-richprecipitatescouldnotbedeterminedbecauseoftheirsmallsize,buttheircompositionissimilartothatoftheplate-likeCu-richprecipitates.Thus,itcanbeconsideredthatthesetwophasesareofthesametype.Nevertheless,theCu-richFCC1andFCC2phaseshavedif-ferentcompositionsandwereidentifiedastwoseparatephases.Thekineticsofmicrostructureforma-tioncanbesummarizedinFig.3.4,whichshowsastrongdependenceofmicrostructureonthecoolingrateduringpreparation.Itcanbefoundthathighcoolingratesfavoredtheformationofpolycrystal-linephaseswithasizeoffewnanometers.However,relativelylowcoolingratesledtotheformationoftypicaldendriticandinterdendriticmicrostructuresduetoelementalsegregation.Thisworkclearlydemonstratedthatforcertain‘‘HEAs’’,asinglesolid-solutionphasecanonlyformatrelativelyhighcoolingrates,andtheirhigh-entropystateisvalidinametastablecondition.Annealingatelevatedtemperaturesorusingslowcoolingratesinducestheformationofmultiplephases,resultinginadra-maticreductionintheconfigurationalentropyofmixingduetoelementalpartitioningamongthesephases.Therefore,properannealingexperimentsarecrucialtotestifyifatrueequilibriumstateexists,i.e.,asinglehigh-entropysolid-solutionphasecanform.Tongetal.[45]summarizedthekineticsoftheAlxCoCrCuFeNi(xfrom0to3.0)HEAsduringthecoolingprocess,asshowninFig.3.5.ForthealloycontainingahighAlcontent,Spinodaldecomposi-tionoccurs,leadingtoasubmicron-modulatedstructure.Fig.3.6showstheXRDpatternsforthealloyhavingalowAlcontent(i.e.,Al0.5CoCrCuFeNi)preparedunderdifferentconditions(as-annealed,as-rolled,andas-homogenized).Itisclearthatphaseformationandmicrostructuresofthealloyaretyp-Fig.3.5.DepictionofphaseformationsequenceduringcoolingofAlxCoCrCuFeNialloysystemwithdifferentaluminumcontents[45].26Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.3.6.XRDpatternsofAl0.5CoCrCuFeNialloyinthethreestates.QC:waterquench[100].icalkineticallydependent[100].Afterannealingat1173Kfor5h,forexample,thediffractionpeakcorrespondingtotheCu-richFCCphasebecomesstrong,suggestingthatformationofthisphasewasgreatlypromoted.AnotherliquidtechniqueisBridgmansolidification,whichisalsocalledtheBridgman–Stockbargermethod[101,102].ThismethodisnamedaftertheHarvardphysicist,PercyWilliamsBridgman,andtheMassachusettsInstituteTechnology(MIT)physicist,DonaldC.Stockbarger.Thistechniqueispri-marilyusedforgrowingsingle-crystalingots,andinvolvesheatingthepolycrystallinematerialaboveitsmeltingpointandslowlycoolingitfromoneendofitscontainer,whereaseedcrystalislocated.Fig.3.7.AschematicdiagramoftheBridgmansolidification[104].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9327Fig.3.8.AschematicdiagramoftheconstitutionalundercoolingbyGandV,hereweassumethatthesolidandliquidinterfacesareparalleltotheliquidmetalofGa–Inalloyssurface,andthedistancebetweenthetwofaceskeepsconstant[106].Asinglecrystalofthesamecrystallographicorientationastheseedmaterialisgrownontheseed,andprogressivelyformedalongthelengthofthecontainer.Suchprocesscanbecarriedoutinahorizontalorverticalgeometry.TheBridgmanmethodisapopularwayforproducingcertainsemiconductorcrystalsforwhichtheCzochralskiprocess[103]ismoredifficult,suchasgalliumarsenide.Thediffer-encebetweentheBridgmantechniqueandtheStockbargermethodissubtle.WhileatemperaturegradientisalreadyinplacefortheBridgmantechnique,theStockbargermethodrequirespullingtheboatthroughatemperaturegradienttogrowthedesiredsinglecrystal.Whenseedcrystalsarenotemployed,polycrystallineingotscanalsobeproducedfromafeedstockconsistingofrods,chunks,oranyirregularly-shapedpiecesoncetheyaremeltedandallowedtore-solidify.Theresultingmicro-structuresoftheingotsasobtainedarecharacteristicofdirectionallysolidifiedmetalsandalloyswiththealignedgrains[90,91].Fig.3.7showsatypicalBridgmansolidificationfacilitycooledbyaliquidmetal(aGa–Ineutecticalloy,whichisaliquidatroomtemperature)[104].Thesamplesareloadedinacrucibleandmeltedbyinductiveheatingorresistantheating,andthenthemeltedalloysaregrad-uallypulleddowntotheliquidmetal.Theoutsideoftheliquidmetalisfurthercooledbywater.Zhangetal.[105]reportedthatthemorphologyofAlCoCrFeNialloychangedfromthedendritepreparedbycoppermouldcastingtotheequi-axedgrainsbyBridgmansolidification.Thischangewasduetothehigh-temperaturegradient,G,thelowgrowthvelocity,V,andthehighratioofG/VfortheBridgmansolidification.Forthecopper-mouldcasting,G/Visusuallylow,astheGisavariableandVisusuallyveryhigh.AsshowninFig.3.8,thehighG/Vvaluetendtodecreasetheconstitutionalundercoolingofthealloy,andthusitispossibletorestrainthedendriteformation[106].Wangetal.[107]appliedathermal-spray(TS)technologytofabricatecoatingsoftheNixCo0.6Fe0.2-CrySizAlTi0.2HEAs.AtypicalTSplasmafacilityispresentedinFig.3.9[108,109].Inthisprocess,finely-dividedHEApowdersareinitiallymeltedonpreparedsubstratesinordertoformspraydeposits.Therequiredheatisgeneratedbycombustiblegasesorelectricarcsinthethermal-sprayinggun.Asthetargetmaterialisgraduallyheatedup,itisconvertedtoamoltenstate,andwillbeacceleratedbythecompressedgas.Theconfinedstreamofparticlesiscarriedtothesubstrate,andstrikesthesurfacetoflattenandformsthinplatelets.Theseplateletsarecompatiblewiththeirregularitiesofthepre-paredsurfaceandtoeachother.Moreover,thesesprayedparticlesareaccumulatedonthesubstratebycoolingandbuildinguponebyoneintoacohesivestructure.Thus,coatingsareformed.TheresultsalsoindicatethatthehardnessoftheHEAspreparedbytheTSincombinationwithannealingat1100°C/10hissignificantlyincreasedtothatoftheas-caststate(1045HV).Thesesam-plesexhibitedexcellentcoarseningresistance,resultingfromtheCr3Siandseveralunidentifiedphases.ThemainfeaturesfoundinTEMarelargeamountsofnano-sizedprecipitatesanddislocations.Notethat,thisNixCo0.6Fe0.2CrySizAlTi0.2alloysystemdoesprecipitateduringcasting,whichisquitedif-ferentfrommanyotherHEAs.ThetypicalTEMcharacterizationoftheas-castNixCo0.6Fe0.2CrySizAlTi0.2alloyswiththeaddition/removalofMn,Si,andNielementsarealsocomparedinthisstudy.There-sultsshowedthatasignificantamountofnano-sizedparticles(rangingfrom5to10nm),atomicseg-regation,twinningstructures,andsub-grainstructuresweredistributedinthematrix.TheabovestudyfurtherconfirmedthatphaseformationandfinalmicrostructureofHEAsarestronglydependantontheprocessingconditions.Zhangetal.[110]reportedthelow-costHEAcoatingwithanominal28Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.3.9.PlasmaSprayProcess(AirPlasmaSprayCoating).Itisprocesssinwhichthemetalsubstrateiscoatedwithcoatinggivingitasmoothprotectivelayer.Thisincludesairplasmaspraying(ASP)particlesofthecoatingatapre-selectedparticlewithvelocityofabout500meterspersecond[108].compositionof6FeNiCoCrAlTiSipreparedbylasercladding.Atypicalschematic[111–113]isshowninFig.3.10.ThistechnologyissimilartotheTSmethodinthatithasanenergysourcetomeltthefeedstockthatisbeingappliedtoasubstrate.Whatitdiffersisthatitusesaconcentratedlaserbeamastheheatsource,anditmeltsthesubstratethatthefeedstockisbeingappliedto.ThistechniquenormallyresultsinametallurgicalbondthathasthesuperiorbondstrengthoverTS.Theresultantcoatingisdensewithnovoidsorporosity.Oneoftheadvantagesofthelaser-claddingprocessisthelaserbeamwhichcanbefocusedandconcentratedtoaverysmallareaandkeepstheheat-affectedzoneofthesubstrateveryshallow.Thisfeatureminimizesthechanceofcracking,distorting,orchangingthemet-allurgyofthesubstrate.Additionally,thelowertotalheatminimizesthedilutionofthecoatingwithmaterialsfromthesubstrate.ThecoatingpreparedbylasercladdinghasasimpleBCCsolidsolutionwithhighmicro-hardness,highresistancetosoftening,andlargeelectricalresistivity.AfterbeingannealedatT<750°C,thecoatingshowshighthermalstability,anditsresistivityslightlydecreases,butthemicro-hardnessal-mostremainsunchanged.AfterannealingatT>750°C,themicro-hardnessofthecoatingslowlyde-creaseswithincreasingthedecompositionrateoftheBCCsolidsolutions[110].Fig.3.10.Atypicalhigh-performancelasercladdingusingthelaser-inductionhybridcladdinghead[111].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93293.2.PreparationfromthesolidstateMechanicalalloying(MA)isasolid-statepowder-processingtechniqueinvolvingrepeatedcoldwelding,fracturing,andre-weldingofpowderparticlesinahigh-energyballmill[114,115].Originallydevelopedtoproduceoxide-dispersionstrengthenednickel-andiron-basesuperalloysforapplica-tionsinaerospaceindustry,MAhasnowbeenshowntobecapableofsynthesizingavarietyofequi-libriumandnon-equilibriumalloysstartingfromblendedelementalorpre-alloyedpowders.MAisakintometal-powderprocessing,wheremetalsmaybemixedtoproducesuperalloys.Mechanicalalloyingoccursinthreesteps.First,thealloymaterialsarecombinedinaballmillandgroundtofinepowders.Ahot-isostatic-pressing(HIP)processisthenappliedtosimultaneouslycompressandsinterthepowders.Afinalheat-treatmentstagehelpsremoveexistinginternalstressesproducedduringanycoldcompaction,whichmayhavebeenused.ThisMAprocesshassuccessfullyproducedalloyssuit-ableforhigh-heatturbinebladesandotheraerospacecomponents.TheschematicforthemechanicalalloyingtechniqueisshowninFig.3.11[116].Chenetal.[117]preparedtheBeCoMgTiandBeCoMgTiZnequi-molaralloysentirelycomposedofHCPelementsbyMA.Nocrystallinesolidsolutionsandcompoundsformedbeforefullamorphization.WeeberandBakkerhadclassifiedtheamorphizationreactionsofMAinbinaryalloysintothreetypesin1988[118,119].Thefirsttype(type-I)featuredpeakshiftingofeachelementduetotheformationofacrystallinesolid-solutionphase,andthenpeakbroadeningduetotheformationofanamorphousstructure.Thesecondtype(type-II)featuredadecreaseofelementalpeaksaccompaniedwithanin-creaseoftheamorphousbroadpeak.Thefinaltype(type-III)featuredtheformationofanintermetal-licorintermediatecompoundpriortoanamorphousstructure[118].Theamorphizationprocessesofthesetwoalloysconformthetype-IIamorphizationoftheclassificationproposedbyWeeberandBak-keretal.[118,119].Theinhibitionofintermetalliccompoundsbeforeamorphizationisduetochem-icalcompatibilityamongconstituentelementsincompanywithhigh-entropyanddeformationeffects,whichenhancethemutualsolubility.Directformationoftheamorphousphaseinsteadofthecrystallineoneattributestotheirlargerangeofatomicsize.Thismechanismcouldbeaguidelineforthetype-IIamorphizationofmulti-componentalloys.Varalakshmietal.[120]reportedthenanocrystallineequiatomicHEAssynthesizedbyMAintheCuNiCoZnAlTisystemfromthebinaryCuNialloytothesenaryCuNiCoZnAlTialloy.Anattempthasbeenmadetofindtheinfluenceofnon-equiatomiccompositionsontheHEAformationbyvaryingtheCucontentupto50at.%(CuxNiCoZnAlTi;x=0%,8.33%,33.33%,and49.98%).Thephaseformationandstabilityofmechanically-alloyedpowdersatanelevatedtemperature(1073Kfor1h)werestud-ied.Thenano-crystallineequi-atomicalloyshaveFCCstructureuptothequinaryCuNiCoZnalloyandhaveaBCCstructureinthehexanaryCuNiCoZnAlTialloy.Innon-equiatomicalloys,BCCistheFig.3.11.Theschematicforthemechanicalalloying[116].30Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.3.12.Aschematicdiagramofthesputtermethod[123].dominatingphaseinthealloyscontaininglessthan8.33at.%Cu,andtheFCCphasewasobservedinalloyswithahigheramountofCu.TheVicker’sbulkhardnessandcompressivestrengthoftheequi-atomicnano-crystallinesenaryCuNiCoZnAlTiHEAafterHIPare8.79and2.76GPa,respectively.ThehardnessoftheseHEAsishigherthanthatofmostcommercialhardfacingalloys(e.g.,stellite,whosecompressivestrengthis4.94GPa).3.3.PreparationfromthegasstateTouseHEAcoatingsastribologicalapplications,Changetal.[121]preparedthe(AlCrTaTiZr)Nxmulti-componentcoatingsbyusingthesputteringtechniquewhichisdemonstratedinFig.3.12[122].Mechanicalproperties,creepbehaviors,deformationmechanisms,andinterfaceadhesionofthe(AlCrTaTiZr)NxcoatingswithdifferentNcontentswerecharacterized.WithincreasingtheN2-to-total(N2+Ar)flowratio(RN)duringthesputteringdeposition,the(AlCrTaTiZr)Nxcoatingstransformedfromanamorphousphasetoanano-compositeandfinallyacrystallinenitridestructure.Thehardnessofthecoatingsaccordinglyincreasedfrom13GPatoahighvalueofabout30GPa,butthecreepstrainratealsoincreasedfrom1.3Â10À4to7.3Â10À4sÀ1.TheplasticdeformationoftheamorphouscoatingdepositedwithRN=0%proceededthroughtheformationandextensionofshearbands,whereasdislocationactivitiesdominatedthedeformationbehaviorofthecrystallinenitridecoatingsdepositedwithRN=10%and30%.WithincreasingtheRN,theinterfaceadhesionenergybe-tweenthecoatingsandthesubstrateswasalsoenhancedfrom6.1to22.9J/m2.OntheSisubstrates,anativeoxidelayermightexist.Consequently,thebondingbetweentheoxidelayerandthemetalliccoatingwithRN=0%wasweak.WithincreasingtheRN,moreNatomswereintroducedandalargernumberofstrongcovalentbondsbetweenN,OandSimightprobablyformattheinterfaces,thusenhancingtheinterfaceadhesionbetweenthe(AlCrTaTiZr)Nxcoatingsandthesubstrates.Themorphologyofthesurfaceandcross-sectionofthedepositedfilmsareshowninFig.3.13.Itisclearthatthefilmsareveryuniform.InFig.3.13(a)and(b),nospecialgrowthfeaturewasfoundintheamorphouscoatingdepositedwithRN=0%.WhenincreasingtheRNto10%,acolumnarstructurewithapyramid-likesurfacewasobservedinFig.3.13(c)and(d),suggestingformationofspecificcrys-tallographyinthisfilmbyintroducinganN2flow.AstheRNincreasedto30%,thesurfacemorphologyY.Zhangetal./ProgressinMaterialsScience61(2014)1–9331Fig.3.13.SEMsurfacemorphologiesandcross-sectionalmicrostructuresof(AlCrTaTiZr)NxcoatingsdepositedwithdifferentN2-to-totalflowratios(RN):(a)surfaceand(b)cross-sectionforRN=0%;(c)surfaceand(d)cross-sectionforRN=10%;(e)surfaceand(f)cross-sectionforRN=30%[121].transformedtoadome-likestructurecoexistedwiththecolumnarstructureasseeninFig.3.13(e)and(f),implyingthefurtherchangeinthecrystallographicstructurewithahighN2flow.Linetal.[124]reportedthatthe(AlCrTaTiZr)Oxfilmsdepositedat623Kbydirectcurrent(DC)magnetronsputteringfromHEAtarget.Oxygenconcentrationincreaseswiththeoxygenflowratio(RO),andsaturatesnear67at.%.As-depositedfilmshaveanamorphousstructure,butthemorphologyofthesefilmsaredifferentasshowninFig.3.14.Themetallicfilmiscomposedofgrainsabout20nm,andsmallergranuleswereseeninthegrainswithoutoxygen.Thecross-sectionimageshowscolumn-likestructurealongthegrowthdirection.Thesmallergranulesareamorphousclusters,the‘‘grains’’areagglomerationsoftheclusters,andthecolumnsarethusbundlesoftheagglomerationscaused32Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.3.14.FieldEmissionScanningElectronMicroscopy(FE-SEM)imagesoftheas-depositedfilms:(a)planeviewand(b)cross-sectionimagesofAlCrTaTiZrmetallicfilms;(c)planeviewand(d)cross-sectionimagesoffilmsdepositedatoxygenflowratio(RO)=2.5%;(e)planeviewand(f)cross-sectionimagesoffilmsdepositedatRO=15%;(g)planeviewand(h)cross-sectionimagesoffilmsdepositedatRO=50%[124].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9333fromthefilmgrowthduringsputtering.Afteradditionof2.5%oxygentotheatmosphere,thecontrastofthefilmsfades,themorphologybecomesunclear,andthecolumnstructuredisappears.Thefilmisdensewithnolowdensitycolumnargrainboundaries.However,thesurfacesofthefilmspreparedatRO=15%becomerougherandshowmosaicofcracknetwork.Theaveragemosaicunitsizeisaround30nm.Thecrosssectionofthefilmshowslotsofdiscretepellets,whichindicatesthatthefilminteg-rityispoorandeasytoinducelocalcracking.AtRO=50%,themorphologyissimilartothemosaicofcracksatRO=15%,whichisattributabletothetensilestressinducedbythethermalexpansioncoef-ficientdifferencebetweenthefilmandsubstrateduringcooling.Thehardnessofthesefilmsvariesintherangeof8–13GPa.Allamorphousoxidefilmsmaintaintheiramorphousstructureupto800°Cforatleast1h.Afterannealingat900°Cfor5h,crystallinephaseswiththestructuresofZrO2,TiO2,orTi2ZrO6form.Annealingenhancesmechanicalpropertiesofthefilms,andthehardnessandmoduluscanreachthevaluesofabout20and260GPa,respectively.Theresistivityofthemetallicfilmsisaround102lXcmbutdrasticallyrisesto1012lXcmwhentheoxygenconcentrationincreases.Fig.4.1.(a)TheadditionofNbelementsintothisHEAchangestheoriginalphaseconstitution,whichyieldstheformationoforderedLavesphasebesidessolidsolutionphase.(b)Thecompressivestress–straincurvesoftheAlCoCrFeNiNbxrodsampleswithadiameterof5mm(x=0,0.1,0.25,and0.5)[135].34Y.Zhangetal./ProgressinMaterialsScience61(2014)1–933.4.ElectrochemicalpreparationYaoetal.[125]preparedtheBiFeCoNiMnHEAfilmusinganelectrochemicalmethod.SEMshowsthatthesurfaceofthefilmwasgrained,andthenano-rodswithahighaspectratioof10wereobtainedbypotentiostaticelectrodepositionintheN,N-dimethylformamide(DMF)–CH3CNorganicsystem.AnamorphousfilmofBi19.3Fe20.7Co18.8Ni22.0Mn19.2wasobtainedbypotentiostaticelectrode-positionatÀ2.0V,butamainsolidsolutionphasewithaFCCstructurewasidentifiedbyXRDandselectedareaelectrondiffraction(SAED)patternsafterthefilmswereannealedunderN2atmosphere.Also,thedifferentialthermalanalysis(DTA)curveverifiedthatthefilmwascrystallizedbytheheattreatmentat762K.Theas-depositedfilmsshowsoftmagneticbehavior,andhardmagneticanisot-ropywasobservedintheannealedfilms.LimitedworkonpreparingHEAsbyelectro-depositionwasreported,butdefinitely,thisfabricationrouteprovideaninnovativeapproachtodevelopnewHEAswithuniqueproperties.4.PropertiesTheconstitutionofmaterialsscienceusuallycontainsfourcomponents,whichformsthematerialssciencetetrahedron.Theyinclude:(1)compositionsandstructures;(2)processing;(3)properties;and(4)performance.Sometimes,thecharacterizationorthemodelingandsimulationcanalsobethoughtasthecenterofthetetrahedron.Inthischapter,themechanical,physical,andchemicalpropertiesofHEAsaredescribedasfollows.4.1.MechanicalbehaviorSuperiorstructuralalloysremaininahighdemandforsomeextremeenvironmentalengineering,particularlyinthenuclear,turbine,andaerospaceindustries.Owingtomicrostructures,HEAsarere-portedwithhighhardnessandhighcompressivestrengthbothatroomtemperatureandelevatedtemperatures[2,21,100,126–130,4].HEAshaveshowngreatintegratedtensileproperties,includingbothhighultimatetensilestrengthandreasonableductility[100,131,132].Overall,ithasbeenre-portedthattheFCC-structuredHEAsexhibitlowstrengthandhighplasticity,andBCC-structuredHEAsshowhighstrengthandlowplasticity.Thus,thestructuretypesarethedominantfactorforcontrollingthestrengthorhardnessofHEAs.Inthischapter,wereviewsomeoftheHEAspapersFig.4.2.Compressivetruestress–straincurvesofAlCoCrFeNiTixalloyrodswithadiameterof5mm[12].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9335Fig.4.3.Asthecoolingratewasincreased,boththestrengthandtheplasticityareenhancedsignificantly.Compressivetruestress–truestraincurvesfortheAlCoCrFeNialloysampleswithdifferentdiameters[129].concerningmechanicalproperties:whathasbeenreported,andwhatthedeformationmechanismsare.Thus,thedesignanddevelopmentofHEAstothenextlevelissuggested.4.1.1.MechanicalbehavioratroomtemperatureForroom-temperaturemechanicalpropertiesofHEAs,theyieldstrengthcanbevariedfrom300MPafortheFCC-structuredalloys,suchasCoCrCuFeNiTixsystem,toabout3000MPafortheBCC-structuredalloys,suchasAlCoCrFeNiTixsystem[12,13].ThevaluesofVickershardnessrangefrom100to900.Thestructuretypesareoneofthedominantfactorsforcontrollingthemechanical36Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.4.CompressiveyieldstrengthofAlxCoCrCuFeNialloysystemtestedatdifferenttemperatures:(A)Al0.5CoCrCuFeNi,(B)Al1.0CoCrCuFeNi,and(C)Al2.0CoCrCuFeNialloys[2].Fig.4.5.Hardness,strengths,andelongationasafunctionoftemperatureforas-rolledsamples[100].behaviorofHEAsatroomtemperature.Here,wewouldliketodiscusstwoothereffectsonmechanicalbehavior.4.1.1.1.Alloyingeffects.Likeotherconventionalalloys,smallamountsofalloyingelementscanalsobeaddedtoHEAstoincreaseordecreasethestrength,plasticity,hardness,etc.Theadditionofonealloy-ingelementtoimproveonepropertymayhaveunintendedeffectsonotherproperties.Forexample,inordertoinvestigatethedifferencesofeffectsofvariousalloyingelementsonmechanicalpropertiesofAlCoCrFeNialloy,theeffectsofC,Mo,Nb,Si,TielementsonAlCoCrFeNialloyhavebeeninvestigatedsystematically[12,133–135].MaandZhang[135]studiedtheNballoyingeffect,findingthatthemicrostructuresandpropertiesoftheAlCoCrFeNbxNiHEAsbecametwophasesinthepreparedAlCoCrFeNbxNiHEAs:oneisbody-cen-tered-cubic(BCC)solidsolutionphase(Fig.4.1(a));theotheristheLavesphaseof(CoCr)Nbtype.TheY.Zhangetal./ProgressinMaterialsScience61(2014)1–9337Fig.4.6.Hardness,strengths,andelongationasafunctionoftemperatureforasannealedsamples[100].Fig.4.7.MicrostructureoftheAlCrCuNiFeCoHEAin(a)as-castand(b)hot-forgedconditions[131].microstructuresofthealloyseriesvaryfromhypoeutectictohypereutectic,andthecompressiveyieldstrengthandVickershardnesshaveanapproximatelylinearincreasewithincreasingNbcontentasshowninFig.4.1(b)[135].Zhouetal.[12]investigatedtheTialloyingeffectonAlCoCrFeNiTix,designedbyusingthestrategyoftheequiatomicratioandhighentropyofmixing.ThealloysystemiscomposedprimarilyoftheBCCsolidsolutionandpossessesexcellentroom-temperaturecompressivemechanicalproperties,asshowninFig.4.2.ParticularlyfortheAlCoCrFeNiTi0.5alloy,theyieldstress,fracturestrength,andplas-ticstrainareashighas2.26GPa,3.14GPa,and23.3%,respectively,whicharesuperiortomostofthehigh-strengthalloyssuchasbulkmetallicglasses[12,136].4.1.1.2.Cooling-rateeffects.Thehighcoolingratesareeffectiveforreducingtheinter-dendritecompo-sitionsegregationandmakingthemicrostructuremoreuniform,andtheductilitycanbeimprovedwhiletheyieldstrengthhasnosignificantchange.Wangetal.[129]studiedthecoolingrateseffectsonthemicrostructureandmechanicalbehaviorsofaHEAofAlCoCrFeNibypreparingas-castrodsampleswithdifferentdiameters.Smallerdiameter38Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.8.Typicalstress–straincurvesofAlCoCrCuFeNi(a)theas-castand(b)hotforgedsamplesdeformedatdifferenttemperaturesandtheinitialstrainrateof10À3sÀ1[131].Fig.4.9.PhotographsofAlCoCrCuFeNitensilesamplesafterdeformationat1000°C:(a)anon-deformedsample;(b)as-cast_¼10À3sÀ1[131].sample(d=77%);and(c)forgedsample(d=864%).erodsampleshavehighercoolingratewhenusingthesameequipment.HefoundthatthecastsampleshavethesamephaseofBCCsolidsolutionwhilehighercoolingratesleadtomoreuniformmicrostruc-tureswithreducedinter-dendritecompositionsegregationasshowninFig.4.3(a–d)[129].Withdecreasingthecastingdiameter,whichmeanstheincreasingcoolingrate,boththestrengthandtheplasticityareincreasedslightly,asshowninFig.4.3(e).Fromthefractographs,thesamplesexhibitfeaturestypicalofcleavagefracture.Thesamplewasfracturedintheverticaldirectiontotheside,whichmaybehelpfultothelargeplasticityforhighercoolingratespecimens.Thisworkmaycontrib-utetoexploringtheapplicationofHEAs,especiallywhenseekingdifferentmechanicalpropertieswiththesamechemicalcomposition.4.1.2.MechanicalbehavioratelevatedtemperaturesThehigh-temperaturepropertiesoftheHEAswerealsoextensivelystudied[14,100,127,131].Like,conventionalalloys,themicrostructuresandmechanicalpropertiescanbetunedtoachievetheopti-mum.Fig.4.4showsthattheyieldstrengthdecreaseswithincreasingthetestingtemperature[2].ItisseenthatthelowAl-contentalloyexhibitslowyieldstrength,butitdecreasesslowlywithincreasingtemperature.Fig.4.5presentsthechangeinmechanicalpropertiesoftheAl0.5CoCrCuFeNiHEAoftheY.Zhangetal./ProgressinMaterialsScience61(2014)1–9339Fig.4.10.SEMimagesoftheAlCoCrCuFeNifracturesurfacesoftensilesamplesaftertensiledeformationatroomtemperature:(aandb)as-castand(candd)hot-forgedconditions[131].rolledsampleasthetemperatureincreased[100].Fig.4.6showsmechanicalpropertiesoftheAl0.5-CoCrCuFeNiHEAofannealedsamplesasafunctionofthetestingtemperature[100].Itisshownthat,afterannealing,thestrengthandhardnessdecreasewhiletheelongationincreases,andthestrengthdecreasesslowlywithincreasingthetemperature,whichmeansthatheat-treatmentwillhavethemostimpactonthemechanicalproperties,especiallyatelevatedtemperatures.Wewouldliketodis-cusstheheat-treatmenteffectonhightemperaturepropertiesofHEAs,includinghigh-performanceHEAsatelevatedtemperatures,calledrefractoryHEAs.4.1.2.1.Heat-treatmenteffects.Fig.4.7presentsthemicrostructureoftheAlCrCuNiFeCoHEAin(a)as-castand(b)hot-forgedconditions[131].Considerablerefinementofthecastmicrostructurewasob-servedafterextensivemulti-stepforgingat950°C.Fig.4.8exhibitsthetypicalstress–straincurvesoftheas-cast(a)andhot-forged(b)samplesdeformedatdifferenttemperatureswithaninitialstrainrateof10À3sÀ1[131].Wefindthat,afterforging,thealloyisconsiderablysofterandmuchmoredeformablethantheas-castalloy.Fig.4.9exhibitsthephotographsoftensilesamplesafterdeforma-tionat1000°C:(a)anon-deformedsample;(b)anas-castsample(tensileductility,d=77%);and(c)aforgedsample(d=864%)atastrainrateof10À3sÀ1.Theforgedsampledemonstrateshighlyhomoge-neousflow,greatresistancetoneckformation,andexceptionallyhighelongationof864%.Fig.4.10presentsthecorrespondingSEMimagesofthefracturesurfacesofsamplesaftertensile-testingdefor-mationatroomtemperature:(aandb)as-castand(candd)hot-forgedconditions[131].Atlowmag-nification,theas-castalloysamplehasacoarse-facetedappearance[Fig.4.10(a)],whereastheforged40Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.11.Compressiveengineeringstress–straincurvesofNbMoTaWandVNbMoTaWHEAsatroomtemperatureandhightemperatures[14].Fig.4.12.Thetemperaturedependenceofthespecificyield-strengthoftheTaNbHfZrTialloyincomparisonwiththatforTaNbMoW,TaNbVMoW,andCrCoCuFeNiAl0.5castalloys[128].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9341Fig.4.13.TheSEMbackscatterimagesoftheNbMoTaW(aandb)andVNbMoTaW(candd)HEAsafterthedeformationat1,673K.[14].samplehasfinegranularappearance[Fig.4.10(c)].Thisobservationisconsistentwiththemuchsmal-lergrain/particlesizeoftheforgedconditionthantheas-castcondition.Highmagnificationimagesconfirmbrittle,quasi-cleavage,fractureoftheas-castalloy,withsuchcharacteristicfeaturesasflatfacets,angularfacetedsteps,river-patternmarkings,cleavagefeathers,andtongues[Fig.4.10(b)].Atthesametime,higher-magnificationimagesoftheforgedsampleconfirmamixedtypeofbrittleandductilefracture[Fig.4.10(d)].Thebrittletypefractureisreflectedbythepresenceofflatfacetswithcharacteristicriver-patternmarkingsinsidelargedimpleswhiletheductiletypefractureisre-flectedinnumerousdimplesofdifferentdiameterssurroundingtheflatfacets.Itislikelythat,duringtensiledeformationoftheforgedsample,cracksareformedattheinterfacesoftheBCCandFCCpar-ticlesbybrittlefracture,andthenthecrackopeningintovoidsoccursbyplasticdeformationofnear-est,moreductileregions[131].4.1.2.2.RefractoryHEAs.Currently,Ni-basedsuperalloysalreadyhavethegreatcombinationofele-vatedtemperatureproperties,includingcreepresistance,corrosionresistance,anddamagetolerance,butoperatingtemperaturesarereachingthetheoreticallimitsofthesematerials.Thehighentropyalloying(HEA)approachwasusedtodevelopnewrefractoryalloys,whichcontainseveralprincipal42Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.14.Theengineeringstress–straincompressioncurvesoftheNbCrMo0.5Ta0.5TiZralloysamplesafterHIPat296K,1073K,1273K,and1473K[127].Fig.4.15.SEMsecondaryelectronimagesofthefracturesurfaceofaNbCrMo0.5Ta0.5TiZralloysamplesaftercompressiondeformationatroomtemperature[127].alloyingelementsatnearequiatomicconcentrations,usingnewmetallicmaterialswithhighermelt-ingpoints,suchasrefractorymolybdenum(Mo)andniobium(Nb)alloys[14,16,126–128].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9343Fig.4.16.Thecompressivetruestress–straincurvesoftheAlCoCrFeNiHEAat(a)298and(b)77K.Theyieldstrengthsandfracturestrengthsatcryogenictemperaturesincreasedistinguishingly,comparedtothecorrespondingmechanicalpropertiesatambienttemperature[137].Senkovetal.[14]reportedtheyieldstrengthofNbMoTaWandVNbMoTaWalloysatelevatedtemperaturesasshowninFig.4.11.FromFig.4.11,wecanseethattheVadditionisbeneficialtoincreasingthestrength,butnotsuitablefortheheat-softeningresistance.Fig.4.12exhibitsthespecificyield-strengthchangewithincreasingthetemperaturefortheTaNbHfZrTi,TaNbMoW,TaNbVMoW,andCrCoCuFeNiAl0.5castalloys[128].ItcanbeseenthatthehighspecificyieldstrengthoftheCrCoCuFeNiAl0.5HEAscanbesustainedoverto1100K,andtheTaNbMoWHEAcansustainitshighspecificstrengthto1800K.Fig.4.13showsthebackscatterimagesoftheNbMoTaWandVNbMoTaWHEAsafterthedeformationat1673K[14].Lowerdensityandbetterroomtemperatureductilityarerequiredifweseekforapplicationsintheaerospaceengineering.ByreplacingV,Ta,andWintheNbMoTaWandVNbMoTaWalloyswithlighterCr,Mo,andZr,respectively,thedensityofthenewrefractoryNbCrMo0.5Ta0.5TiZrHEAsalloywasre-ducedto8.2g/cm3.Inaddition,thenewalloyshowedimprovedroomtemperatureductility,relativetotheNbMoTaWandVNbMoTaWalloys.Fig.4.14exhibitstheengineeringstress–straincompression44Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.17.ThelowandhighmagnificationsforthefracturesurfacesoftheAlCoCrFeNiHEAat298Kshownin(a)and(b),respectively;ThelateralsurfaceofthedeformedsampleoftheAlCoCrFeNiHEAat298Kshownin(c);ThelowandhighmagnificationsforthefracturesurfacesoftheAlCoCrFeNiHEAat77Kshownin(d)and(e),respectively;ThelateralsurfaceofthedeformedsampleoftheAlCoCrFeNiHEAat77Kshownin(f)[137].curvesoftheNbCrMo0.5Ta0.5TiZralloysamplesafterHIPat296K,1073K,1273K,and1473K[127].Duringdeformationat296K,theyieldstrengthwas1595MPaandcontinuousstrengtheningoccurreduntilthealloyfracturedbylocalizedshearingatmaximumstrengthof2046MPaaccumulatingabouta5%strain.DuringtestingatT=1073K,yieldstrengthdecreasedto983MPa,thepeakstrengthof1100MPawasachievedatastrainof4.2%,andthesamplefracturedbyshearingatastrainofabout6%,afteradecreaseinstrengthto1050MPa.Anincreaseinthetestingtemperatureto1273Kresultedinaconsiderablesofteningofthealloyafterashortstageofstrainhardening.Atthistemperature,yieldstrength(r0.2)=546MPa,compressivestrength(rp)=630MPa,andtheminimumstrengthachievedduringstrainsofteningwas393MPaafteraplasticstrainofabout22%.Atthistemperature,thesampledidnotfracture.Anincreaseinthetemperatureto1473K,ledtoafurtherdecreaseintheflowstressofthealloy,andr0.2was170MPa.Thepeakstressof190MPawasreachedshortlyafteryielding,followedbyweaksofteningandasteadystateflowattheminimumstrengthY.Zhangetal./ProgressinMaterialsScience61(2014)1–9345Fig.4.18.Atalltemperaturesto4.2K,theAl0.5CoCuCrFeNiHEApossesseshighplasticityundercompression.Attemperaturesbelow15K,thecurvesshowaserratedshape.Theinsertedfigureillustratesatypicalserratedstress–straincurve[138].(rmin)=135MPa.Nosamplefractureoccurredatthistemperature.Fig.4.15presentstheSEMsecond-ary-electronimagesofthefracturesurfaceofaNbCrMo0.5Ta0.5TiZralloysamplesaftercompressiondeformationatroomtemperature[127].Itshowsacombinationofplasticandbrittledeformationmechanism.Theformationofdimplesisconvincingevidenceofplasticdeformation[Fig.4.15(bandc)]whilethemicrostructureoftearedpiecesisthesymbolofquasi-cleavagefractureoftheFCC(Laves)phase,aswellasalongtheinterfaces[Fig.4.15(aandd)].Insummary,refractoryHEAisauniqueideaandrelativelynewfield.Comparedtocompositionswith3delements,refractoryHEAs(4delements)showexceptionallybrightmechanicalproperties,especiallyatelevatedtemperatures.Moreresearchfieldsincludingnewcompositionsandfracturemechanismneedtobeexplored.4.1.3.MechanicalbehavioratcryogenictemperaturesItisfullyacknowledgedthatthelow-temperaturemechanicalpropertiesareparticularlycriticalforrealapplicationsofmetallicalloys.ThemechanicalbehaviorsofHEAsatcryogenictemperaturesareyettobeinvestigatedindetail.ItisalsoknownthatFCCmetaldoesnotshowaductile–brittletransitiontemperature(DBTT),soshouldweexpectthesameforFCCHEAs?Meanwhile,becauseDBTTisknownforBCCmetals,hasanybodydoneworkondeformationofBCCHEAsatlowT?TheaimofthischapteristoreviewthecompressivecharacteristicsofbothBCCandFCCHEAsatcryogenictemperatures.Qiaoetal.studiedthecompressivecharacteristicsofasingle-phaseBCCHEAwiththecompositionofAlCoCrFeNiat77K[137].FortheAlCoCrFeNiHEA,thereisnoobviousductiletobrittletransitioneventhetemperatureisloweredto77K.Comparingwiththecompressionpropertiesatdifferenttem-peratures,theyieldingstrengthsandfracturestrengthsoftheAlCoCrFeNiHEAincreaseby29.7%and19.9%,respectively,whenthetemperaturesdecreasefrom298to77K,asshowninFig.4.16.However,thefracturestrainschangegentlywhilethefracturemodesat298and77Kareintergranularandtransgranular,respectivelyasshowninFig.4.17[137].ThismeansthattheDBTToftheAlCoCrFeNiBCCHEAislowerthan77K.Laktionovaetal.[138]studiedthedeformationpeculiaritiesofAl0.5CoCrCuFeNialloybyinatem-peraturerangefrom300Kto4.2K.Thealloyhasbeenfoundtoprovideahighstrengthandplasticitygreaterthan30%inthistemperaturerange:theyieldstressamountsto450MPafor300Kand46Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.19.S–NcurvescomparingthefatigueratiosoftheAl0.5CoCrCuFeNiHEA,otherconventionalalloysandbulkmetallicglasses[139].750MPafor4.2KasshowninFig.4.18.Attemperaturesbelow15K,thesmoothbehaviorofthestress–straincurveschangestothejump-likeone,calledserrationbehavior.Thistrendisproposedtoberelatedtothechangeofdeformationmechanisms,whichisdiscussedindetailsinSection5.Thus,FCCHEAsdonotexhibitDBTT,likeFCCmetals.4.1.4.FatiguebehaviorManypotentialapplicationsforHEAs,suchasaircraftenginecomponents,frequentlyencountercyclicloading.Ifweseekfortheapplicationintheaerospaceindustryorotherarea,besidesmonotonicloading,thefatiguebehaviorandlifetimepredictionareoneofthemostsignificantfactors,whicharerequiredtobestudiedandexplored,yetrarelyreported.ThelimitedpublicationpublishedsofarisconcerningthefatiguebehaviorofAl0.5CoCrCuFeNiHEAs,discussedasbelow.Hemphilletal.[139]studiedfatiguebehavioroftheAl0.5CoCrCuFeNiHEAandcomparedtheresultstomanyconventionalalloys,suchassteels,titaniumalloys,andadvancedBMGs.Fig.4.19(a)showsthatatypicalstressrangevs.thenumberofcyclestofailure(S–N)curvescomparingfatigueratios[fatigueratio=fatigueendurancelimit/ultimatetensilestrength(UTS))oftheAl0.5CoCrCuFeNiHEAY.Zhangetal./ProgressinMaterialsScience61(2014)1–9347Fig.4.20.Plotscomparing(a)thefatigueendurancelimitsand(b)thefatigueratiosoftheAl0.5CoCrCuFeNiHEAasafunctionoftheUTSofotherstructuralmaterialsandBMGs[139].tootherconventionalalloys,andBMGs[140].ThelowerboundofthefatigueratiosofHEAscomparesfavorablytothoseofsteels,titanium,andnickelalloys,andoutperformszirconiumalloysaswellassomeoftheZr-basedBMGs.Moreover,forsomematerials,suchasultra-highstrengthsteelsandwroughtaluminumalloys,theirhightensilestrengthsresultinlowerfatigueratiosduetotheirbrittlenature.Thestronggroup(whichisdefinedassamplesinthegroupcontainfewerfabricationdefectsandcanrevealtheintrinsicfatiguebehavioroftheHEA)ofHEAstendstooutperformthesematerialsbydisplayingagreaterfatigueratiothanmaterialswithcomparabletensilestrengthsduetothere-ducednumberofdefects.TheupperboundofthefatiguelimitofHEAsissignificantlyhigherthanthatofotherconventionalalloysandBMGs,showingthatHEAshavethepotentialtooutperformthesematerialsinstructuralapplicationswithimprovedfabricationandprocessing.Fig.4.19(a)illustratesthefatigue-endurancelimitsfortheAl0.5CoCrCuFeNiHEAasafunctionofUTS.OnereasonforthehighfatiguestrengthofHEAsisthehightensilestrengthofthesematerials.ItcanbeclearlyseenthatastheUTSincreasesthefatigue-endurancelimitalsoincreasesinalinearfashion,approximatelyequalto0.5formostmaterials[139].HEAsfollowasimilarpatternandeven48Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.21.(a)WeightgaintestofAl00Ti05(Co1.5CrFeNi1.5Ti0.5),Al02Ti05(Al0.2Co1.5CrFeNi1.5Ti0.5),Al00Ti10(Co1.5CrFeNi1.5Ti),Al02Ti10(Al0.2Co1.5CrFeNi1.5Ti),SUJ2(AISI52100)andSKH51(AISIM2)specimensat600°C(873K)and800°C(1073K)for24h.Thedataispresentedasweightincreaseperunitareaaftertest.(b)Hothardnessvs.temperatureplotsforAl00Ti10,Al02Ti10,SUJ2andSKH51specimensfromroomtemperatureto900°C(1173K)[140].exceedthisratio,withanupperboundof0.703.TobettercomparethefatigueperformanceofHEAswithothermaterialswithrespecttotheirUTS,thefatigueratiosareusedasshowninFig.4.19(b).Fig.4.20(a)illustratesthisrelationshipcomparingthefatigue-endurancelimitvs.UTS.ItshightensilestrengthmaycontributetothehighfatiguestrengthsofHEAs.ItcanbeclearlyseenthatastheUTSincreasestheendurancelimitwillalsoincreaseinalinearfashion,approximatelyequalto0.5formostmaterials[139].HEAsfollowasimilarpatternandevenexceedthisratio,withanupperboundof0.703asshowninFig.4.20(b).TheseresultsarehighlyencouragingforexcellentfatigueresistanceinHEAsandwithpotentiallongfatiguelife,evenatstressesapproachingtheultimatestress.BecauseofthelackoftheliteratureonthefatiguebehaviorofHEAs,thefocusofthecontinuingstudiesshouldbeplacedonthedatapointsthatshowanunexpectedlylongfatiguelife.Ifthenecessaryinformationonthefatigueresis-tancecanbefoundandapredictionmodelforfatiguespecimenscanbedeveloped,HEAshaveabrightfutureinvariousapplicationsforcomponentsinfatigueenvironments.4.1.5.WearbehaviorAlthoughitischeaperthanmostsuperalloysandTialloys,thecostofHEAsarestillhigherthanthatofsteel,owingtotheuseofsomeexpensiveelements,suchasCoandCu.Thus,HEAsshowmoreY.Zhangetal./ProgressinMaterialsScience61(2014)1–9349Fig.4.22.VickershardnessandwearcoefficientofAlxCoCrCuFeNialloyswithdifferentaluminumcontents[141].competitiveandpotentialforuseintools,molds,andstructuralcomponents,sowearisafundamentalphenomenonintheseapplications.TestsonthewearbehaviorofHEAshavebeenconductedunderabrasiveconditionsandadhesiveconditions.Chuangetal.[140]reportedthatthewearresistanceoftheCo1.5CrFeNi1.5TiandAl0.2Co1.5CrFeNi1.5Tialloysarebetterthanthatofconventionalwear-resistantsteelswithsimilarhardnessasshowninFig.4.21.IncreasingthemolarratioofTisignificantlyincreasesthevolumefractionofgprecipitates.TheadditionofAldecreasestheamountofthecoarsegphaseintheinterdendritic(ID)regionsandtriggerstheformationoftheneedle-likegphasewithWidmanstättenstructuresintheAl-richregionsoftheID[140].ThedifficultyineffectivelyrelocatingAlresultsinthisphenomenon.ThehardnessvaluesofCo1.5CrFeNi1.5TiandAl0.2Co1.5CrFeNi1.5TialloysareHV654andHV717,respectively,becauseofthestrengtheningeffectfromthehardgphase[140].Theexcellentanti-oxidationpropertyandresistancetothermalsofteningintheseHEAsareproposedtobethemainreasonsfortheexcellentwearresistance.AlloyingcanaffectthewearbehaviorofHEAs.Wuetal.[141]studiedadhesivewearbehaviorofAlxCoCrCuFeNiHEAsasafunctionofaluminumcontent.Hefoundthat,forhigherAlcontent,thewornsurfaceissmoothandyieldsfinedebriswithahighoxygencontent,whichgivesalargeimprovementinwearresistanceasshowninFig.4.22.Thereasonofthisimprovementisattributedtoitshighhard-ness,whichnotonlyresistsplasticdeformationanddelamination,butalsobringsabouttheoxidativewearinwhichoxidefilmcouldassistthewearresistance[141].4.1.6.SummaryUptonow,someHEAswithuniquepropertieshavebeenreported:e.g.,high-strengthbody-cen-tered-cubic(BCC)AlCoCrFeNiHEAsatroomtemperature,andrefractoryVNbMoTaWatelevatedtem-peratures.Forroom-temperaturemechanicalpropertiesofHEAs,theyieldstrengthcanbevariedfrom300MPafortheFCC-structuredalloystoabout3000MPafortheBCC-structuredalloys.Thealloyandcooling-rateeffectscanchangethemicrostructuresandinfluencemechanicalproperties.Atelevatedtemperatures,thehighspecificyieldstrengthoftheAl0.5CrCoCuFeNiHEAscanbesustainedoverto1100K,andtheTaNbMoWrefractoryHEAcansustainitshighspecificstrengthto1800K.Likecon-ventionalalloys,heat-treatmentprocessisalsooneofthemostcrucialfactorsonaffectingmechanicalproperties.Atcryogenictemperatures,fortheAl0.5CoCrCuFeNiHEA,thereisnoobviousductiletobrit-tletransitioneventhetemperatureisloweredto4.2K.Ontheotherhand,HEAsalsopossessbothhighfatigueresistanceandhighwearresistance.Forfatiguebehavior,Al0.5CoCrCuFeNiHEAswasstudiedandcomparedtomanyconventionalalloys,suchassteels,titaniumalloys,andadvancedbulkmetallicglasses.TheAl0.5CoCrCuFeNiHEAscouldhavesupremefatigueresistanceoutperformingconventionalalloysandBMGs,iftheinclusioncontents50Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93Fig.4.23.Magnetizationcurvesoftheas-castandas-annealedCoCrFeNiCuAlhighentropyalloys:(a)thehysteresisloopsand(b)thetemperaturedependenceofmagnetization(M(T))curveswhilecoolingthealloysat200Oe[142].canbereducedintheHEA.Forwearbehavior,thewearresistancesoftheCo1.5CrFeNi1.5TiandAl0.2-Co1.5CrFeNi1.5Tialloysarebetterthanthatofconventionalwear-resistantsteelswithsimilarhardness.4.2.PhysicalbehaviorMaandZhang[135]reportedthattheAlCoCrFeNbxNi(x=0,0.1,0.25,0.5,and0.75)HEAsexhibitferromagneticproperties,becausetheirpermeability(v)isintherangeof2.0Â10À2–3.0Â10À3.WhilefortheTi0.8CoCrCuFeNiandTiCoCrCuFeNialloys,theyexhibitsuperparamagneticproperties[13],whichisduetothenano-particlesforminginthealloy.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9351Fig.4.24.Electricalconductivityr(a),thermalconductivity(b),thermal-expansion(CTE)(c),andCurietemperatureandmolecularfieldasafunctionofxinAlxCoCrFeNialloys(d)[144].Fig.4.23presentsthemagnetichysteresisloopsoftheas-castandas-annealedCoCrFeNiCuAlHEAsmeasuredatroomtemperature.Bothalloysshowexcellentsoftmagneticproperties.Saturatedmag-netizations(Ms),remanenceratio(Mr/Ms),andcoercivity(Hc)oftheas-castandas-annealedalloysareestimatedtobe38.18emu/g,5.98%,45Oe,and16.08emu/g,3.01%,15Oe,respectively.Zhangandco-workers[13]hadinvestigatedthemagneticpropertiesofCoCrCuFeNiTixalloys,whichexhibitedsat-uratedmagnetizationlowerthan2emu/g.Comparedwiththemagneticpropertiesofbulkmetals,boththeas-castandas-annealedCoCrFeNiCuAlalloysshowhighMsandlowHc.Thealloyspresentcomparablemagneticpropertieswiththesoftferriteandcanbeutilizedassoftmagneticmaterials.Ontheotherhand,theas-castalloyexhibitsasimilarsuper-paramagneticcurve,whichcanbeattrib-utedtothenanoscaledmicrostructure.ThedecrementofMsintheas-annealedalloyresultedfromthestructurecoarseningandphasetransformation.Fig.4.23(b)depictsthetemperaturedependenceofmagnetization[M(T)]curvesoftheas-castandas-annealedalloys,whilecoolingthemtoliquidnitro-genat200Oe.Theresultsclearlyrevealaferromagnetictransitionofbothalloysatalltemperatures.TheM(T)curvesalsoindicatethehighCurietemperature(Tc)ofbothalloys[142].ChenandKao[143]reportedthattheelectricalresistivityoftheAl2.08CoCrFeNiHEAisveryclosetoaconstantoveratemperaturerangefrom4.2to360K.Theaveragetemperaturecoefficientofresis-tivity(TCR)from4.2to360Kis72ppm/K,withahalf-parabolicshapeinitsresistivity-temperaturecurvethatissimilartoManganin(ManganinisatrademarkednameforanalloyofCu86Mn12Ni2).ItwasfirstdevelopedbyEdwardWestonin1892.Manganinfoilsandwiresareusedinthemanufactureofresistors,particularlyammetershunts,becauseoftheirvirtuallyzerotemperaturecoefficientofresistancevalueandlong-termstability.SeveralManganinresistorsservedasthelegalstandardfortheohmintheUnitedStatesfrom1901to1990.Manganinwiresarealsousedasanelectrical52Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93conductorincryogenicsystems,minimizingtheheattransferbetweenpoints,whichneedelectricalconnections.Manganinisalsousedingaugesforstudyinghigh-pressureshockwaves(suchasthosegeneratedfromthedetonationofexplosivesbecauseithaslowstrainsensitivitybuthighhydrostaticpressuresensitivity.Itindicatesthatthephononeffectonthisalloykeepsnearlythesamethroughthistemperaturerange.Chouetal.[144]reportedtheelectricalconductivity,r,asshowninFig.4.24(a),thermalconduc-tivity,inFig.4.24(b),thecoefficientofthermalexpansion(CTE)inFig.4.24(c),andtheCurietemper-ature,Tc,togetherwithmolecularfield,inFig.4.24(d),asafunctionofcomposition,x,intheAlxCoCrFeNialloys.Theelectricalconductivity,r,forAlxCoCrFeNicanbedividedintothreepartsaccordingtothemicrostructureofthealloys.Theelectricalconductivitydecreaseswithincreasingxinthesingle-phase(FCCorBCC)regions,whileithasaminimumatx=0.875intheduplex-phase(FCC+BCC)region.Theelectricalconductivityintheduplex-phaseregionissmallerthanthatinthesinglephase.Theelectricalresistivity,whichistheinverseofr,isinfluencedbytheelectron–electroninterac-tion(T1/2),magneticeffect(T2),andphonon(T3)[144].Attemperaturesverynearabsolutezerotem-perature,aKondo-typeterm,lnT,mayappearintheexpressionofelectricalresistivityfordilutemagneticatomsinnonmagneticalloys.Atintermediatetemperatures,e.g.,100–200K,TandT2maycontributetoelectricalresistivity.AttemperatureshigherthantheDebyetemperaturewherethethermaleffectissignificant,electricalresistivityisproportionaltothetemperature,T,andelectricalresistivitymaybewrittenasq¼qoþcTð4-1Þhereqoistheresidualelectricalresistivityat0K.Thermalconductivity,j(T),isgenerallyobtainedfrommeasurementsofthermaldiffusioncoeffi-cient,a(T),specificheat,C(T),anddensity,q(T),ofamaterialatatemperature,T,andthencalculatedaccordingtothefollowingequation[144],jðTÞ¼aðTÞÂCðTÞÂqðTÞð4-2ÞFig.4.24(b)showsj(T)asafunctionofxfortheAlxCoCrFeNiHEAs.AtaspecificT,j(x)decreaseswithxineachsingle-phaseregionforbothFCCandBCCstructures,andthermalconductivityforBCCFig.4.25.ComparisonsoftheanodicpolarizationcurvesfortheAl0.5CoCrCuFeNialloyandthe304stainlesssteelindeaerated1NH2SO4[150].Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9353structureisgreaterthanthatforFCCstructure.ThermalconductivityintheFCC+BCCduplexregionisthelowestforeachspecificT.AsshowninFig.4.24(c),CTEfortheAlxCoCrFeNialloysdecreaseswithx.TheCurietemperaturepresentedinFig.4.24(d)increaseswithxintheFCC-andBCC-single-phaseregions,andreachesamin-imumintheduplexFCC+BCCregion.Usingtheinvareffecttomeasurethissecond-orderphasetran-sition,onecanhaveaccuratedatafortheCurietemperature.Thecorrespondingmolecularfieldoftheorderof107Oe,showninFig.4.24(d),isalsoestimatedbyassumingthemagnetizationofeachalloybeingwithoneBohrmagneton.Yangetal.[145]alsoreportedtheelectricalresistivityofNbTiAlVTaLax,CoCrFeNiCu,andCoCrFe-NiAlHEAs.WiththeincreaseofLaaddition,theresistivitiesofNbTiAlVTaLaxalloysincrease.Withincreasingthetemperature,theresistivityoftheCoCrFeNiCualloydecreases,whiletheCoCrFeNiAlal-loyincreases.Kaoetal.[146]studiedtheelectrical,magnetic,andHallpropertiesoftheAlxCoCrFeNiHEAs,andfoundaKondo-likebehavior.Generally,theKondoeffectdescribesthescatteringofconductionelec-tronsinametalduetomagneticimpurities.Itisameasureofhowelectricalresistivitychangeswithtemperature,whichisusuallyobservedinthedilutealloysystems.TheKondo-effectlikelyappearsinalloyscontainingrare-earthelementslikecerium,praseodymium,andytterbium,andactinideele-mentslikeuranium.Lucasetal.[147]studiedthemagneticpropertiesoftheFeCoCrNiHEAs,andevaluatedtheirpoten-tialapplicationsathightemperatures,andsuggestedthattheinclusionofCr,whichisananti-ferro-magneticelement,willnotbegoodforthemagneticproperties,andPdwouldbemuchbettertosubstituteforCr.Singhetal.[148]furtherstudiedmagnetichardeningoftheAlCoCrCuFeNiHEAsbya3-dimensionatomprobe(3D-AP)andTEM,andindicatedthedecompositionofCrFeCo-richre-gionsintoFeCo-richandCr-richdomains,respectively.4.3.Biomedical,chemicalandotherbehaviorsBraicetal.[149]investigatedthebiomedicalpropertiesof(TiZrNbHfTa)Nand(TiZrNbHfTa)CHEAcoatings.ItreportedthattheHEAcarbidecoatingexhibitedhighhardnessofabout31GPa,andgoodfrictionbehaviorandwearresistancewhentestedinsimulatedbodyfluids.Cell-viabilitytestsprovedthattheosteoblastcellswereadherenttothecoatings,andveryhighpercentages(>80%)oflivecellswereobservedonthesamplesurfaceafter72hincubationtime.Leeetal.[150]reportedthecorrosionresistanceoftheHEAofAl0.5CoCrCuFeNi.Fig.4.25showsthatthecorrosionpotential(Ecorr)oftheAl0.5CoCrCuFeNiHEA(À0.080VSHE)isapparentlymorenoblethanthatofthe304stainlesssteel(À0.151VSHE),andthecorrosioncurrentdensity(icorr)oftheAl0.5CoCrCuFeNiHEA(3.19lA/cm2)isalsolowerthanthatofthe304stainlesssteel(33.18lA/cm2)Fig.4.26.TEMimageoftheCu/NbSiTaTiZr/Siteststructureafter800°Cannealing.InsetshowsthehighresolutionimageoftheNbSiTaTiZrbarrier[153].54Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93byanorderofmagnitudeina1NH2SO4solution.Additionally,the304stainlesssteelhasawiderregionofthepassivepotentialthantheAl0.5CoCrCuFeNiHEA.Clearly,theAl0.5CoCrCuFeNialloyismoreresistanttogeneralcorrosionthanthe304stainlesssteel(higherEcorr,lowericorr)inthe1NH2SO4solution.Chenetal.[99]studiedthemicrostructureandelectrochemicalpropertiesofCu0.5NiAlCoCrFeSiHEAs,andmadeacomparisonofcorrosionpropertiesbetweentheHEAsandthetype-304stainlesssteel.Theanodic-polarizationcurvesoftheHEAs,obtainedinaqueoussolutionsofNaClandH2SO4,clearlyindicatedthatthegeneralcorrosionresistanceoftheHEAsatambienttemperatureissuperiortothatof304stainlesssteels,irrespectiveoftheconcentrationofanelectrolyteintherangeof0.1–1M.Ontheotherhand,theHEAs’resistancetopittingcorrosioninaClÀenvironmentisinferiortothatof304stainlesssteel,asindicatedbyalowerpittingpotentialandanarrowerpassiveregionfortheHEA.Testsin1NsulfuricacidcontainingdifferentconcentrationsofchlorideionsshowedthatHEAshavetheleastresistancetogeneralcorrosionatachloride-ionconcentrationof0.5M(closetotheconcentrationinseawater).Thelackofhysteresisincyclic-polarizationtestsconfirmedthatHEAs,likethe304stainlesssteel,arenotsusceptibletopittingcorrosioninthechloride-free1NH2SO4.Chenetal.[151,152]reportedthattwopromisingHEAs,AlxCrFe1.5MnNi0.5(x=0.3and0.5),weredesignedfromtheAlCoCrCuFeNialloysbysubstitutingMnforexpensiveCoandexcludingCutoavoidtheCusegregation.Microstructuresandpropertieswereinvestigatedandcomparedindifferentstates:as-cast,as-homogenized,as-rolled,andas-agedstates.TheAl0.3CrFe1.5MnNi0.5alloyintheas-cast,as-homogenized,andas-rolledstateshasadual-phasestructureofBCCandFCCphases,inwhichAl,Ni-richprecipitatesoftheB2-typeBCCstructuredispersedintheBCCphase.TheAl0.5CrFe1.5-MnNi0.5alloyinthecorrespondingstateshasamatrixofaBCCphaseinwhichCr-richparticlesoftheBCCstructureandAl,Ni-richprecipitatesoftheB2-typeBCCstructuredisperse.ThesethreeBCCphaseshavethesamelatticeconstant.BothalloysareprocessableandshowahardnessrangeofHV300–500intheas-cast,as-forged,as-homogenized,andas-rolledstates.TheAl0.5CrFe1.5MnNi0.5al-loyhasahigherhardnesslevelthanAl0.3CrFe1.5MnNi0.5becauseofitsfullBCCphase.Bothalloysdis-playasignificanthigh-temperatureage-hardeningphenomenon;theas-castAl0.3CrFe1.5MnNi0.5alloycanattainthehighesthardness,HV850,at600°Cfor100h,andAl0.5CrFe1.5MnNi0.5canpossessevenhigherhardness,HV890.TheaginghardeningresultedfromtheformationofaCr5Fe6Mn8-likephase.Priorrollingonthealloysbeforeagingcouldsignificantlyenhancetheage-hardeningrateandhard-nesslevelduetointroduceddefects.TheAl0.5CrFe1.5MnNi0.5alloyexhibitstheexcellentoxidationresistanceupto800°C,whichisbetterthantheAl0.3CrFe1.5MnNi0.5alloy.Combiningthismeritwithitshighsofteningresistanceandwearresistance,ascomparedtocommercialalloys,theAl0.5CrFe1.5-MnNi0.5alloyhasthepotentialforhigh-temperaturestructuralapplications.Kaoetal.[46]studiedtheCoFeMnTiVZrHEAsystemfortheabsorptionanddesorptionofhydrogen.Pressure-composition-isotherms(PCIs)demonstratethatCoFeMnTixVZr,CoFeMnTiVyZr,andCoFeMnTiVZrzcanabsorbanddesorbhydrogenforx,y,andzthatsatisfy0.5Nb$Zr>Ta>Hf)seemstofollowtheorderoftheatomicsizeandweightoftheconstituentelements,furtherconfirm-inglackofstrongchemicalordering.Conversely,verystrongshort-rangeorderingofNi–P,followedbyPt–PandPd–P,werepredictedinPdPtNiCuPatT=1200K.Theorderingtendencybecomesstrongerasthetemperatureislowereddur-ingsolidification.Asaresult,quenchingisrequiredtosuppresscrystallizationtoformanamorphousstate.ThesimulateddiffusionconstantsareCu:1.01Â10À5,Ni:8.10Â10À6,P:8.81Â10À6,Pd:7.36Â10À6,Pt:7.70Â10À6cm2/s.AlthoughPatomsare20%smallerthanCuatoms,CudiffusesY.Zhangetal./ProgressinMaterialsScience61(2014)1–9379Fig.7.7.AIMD-predictedpartialpaircorrelationfunctionsandmeansquaredisplacementplotforPdPtNiCuPatT=1200Kafter30pssimulationtime,showingstrongorderingbetweenPandNi[250].ThesimulateddiffusionconstantsareCu:1.01Â10À5,Ni:8.10Â10À6,P:8.81Â10À6,Pd:7.36Â10À6,andPt:7.70Â10À6cm2/s.thefastest.ThereasonisduetoformationofstrongshortrangeorderingofP–NipairsfollowedbyP–PtpairswhilethecorrelationsassociatedwithCuaretheweakestoverall.BasedonthepresentAIMDsimulationsofvariousHEAsincomparisonwithavailableexperiments,itistemptingtosuggestthefollowingguidelinesinsearchingfornewHEAswithimprovedpropertiesusingAIMDsimulations:(1)Promotetheformationofhomogenoussolidsolutionsbyavoidingstrongchemicalsegregationandformationofdetrimentalintermetallics,startingintheliquidstate.80Y.Zhangetal./ProgressinMaterialsScience61(2014)1–931600fccfcc+bccbcc1500LiquidL+bcc_B2L+fcc1400T [C]L+bcc_A21300L+fcc+bcc_B21200L+bcc_A2+bcc+B2fccL+fcc+L+fcc+bcc_A2+bcc_B2bcc_A2bcc_A2+bcc_B21100fcc+bcc_B2fcc+bcc_A2+bcc_B2100000.511.522.53Al ratio (x)Fig.7.8.thecalculatedisoplethoftheAlxCoCrFeNialloyswithx=0–3usingourcurrentthermodynamicdescription[248].(2)Maintainequivalentorcomparablediffusivityamongprincipalelementstocontrolthekineticsofphasetransformationaimingtowardformingmoreorlesshomogenousmicrostructuresdur-ingcooling.Theseguidelinesarecomplementarytotheempiricalrules(i.e.heatofmixingandatomicsizedif-ference)forHEAformationasaddressedinSection2.CombiningthemwillacceleratedesignofnewHEAs.7.3.CALPHADmodelingComparedtoDFTcalculationsandAIMDsimulations,theCALPHADmethodallowsuserstoper-formthermodynamicandkineticcalculationsbasedonthephenomenologicalapproach[286–288]thatareusedtoquantityGibbsfreeenergiesofindividualphasesandmobilityinasystem.Typicalthermodynamiccalculationsincludebutarenotlimitedtophasecompositions,phasefractions,andphasestabilityasafunctionofcomposition,temperature,andpressure.Veryrecently,Zhangetal.[248]developedathermodynamicdatabasefortheAl–Co–Cr–Fe–Nisys-tem.Theiremphasiswasplacedontheinteractionparametersoflower-orderconstituentsystemsthatareusuallythemosteffectiveandimportanttoobtainareliablehigher-orderthermodynamicdatabase.Therearenohigher-order(quaternaryorquinary)interactionparametersusedintheirthermodynamicdatabase[248]asafirstapproximation.Fig.7.8showstheverticalsectionoftheAlxCoCrFeNifortheAlratiofrom0to3.ThisfigurepredictsthephasestabilitywithrespecttoAlcontentsintheAlxCoCrFeNialloy.ItisseenthattheprimarysolidifiedphaseisFCCwhenx<0.75,anditisBCCandB2,whichsolidifiesfirst,whenx>0.75,whichseemtobegenerallyconsistentwiththeexperimentalresults[248].Non-equilibriumsolidificationpathsimulationswasperformed[248]usingtheScheilmodel,asshowninFig.7.9toillustratethefractionofsolidsduringsolidificationintheAlxCoCrFeNialloys.ItisseenthatthecalculationpredictstheformationofaBCCphaseof2.3%whenx=0.3,asexperimen-tallyobservedbyKaoetal.[146].Fig.7.10presentstheequilibriumphaseschangewithrespecttocompositionoftheAlxCoCryFeNialloyshomogenizedat1373K.ThistrendindicatesthattheBCCphaseregionincreases,andtheFCC/FCC+BCCregiondecreaseswithincreasingtheCrconcentration,demonstratingthatCrstabilizestheBCCphase.WhentheCrratio,x,equalsto2.0,nopureFCCphaseY.Zhangetal./ProgressinMaterialsScience61(2014)1–9381(a)150014501400(b)L-->bcc_B2Temperature [C]L-->bcc_B2+bcc_A213501300125012001150L-->bcc_A2+fccL-->bcc_A2 x=0.8 x=1.0 x=1.2 x=1.4 x=1.6 x=1.8 x=2.0L-->bcc_A2+fcc+bcc_B20.00.10.20.30.40.50.60.70.80.91.0Fraction of SolidFig.7.9.SolidificationpathscalculatedbytheScheilmodelfortheAlxCoCrFeNialloysusingourcurrentthermodynamicdatabase:(a)x=0.1–0.8;(b)x=0.8–2[231].regioncanformwithintheAlxCoCr2FeNialloys.TheeffectofotherelementsinthephasestabilityofBCC/FCCisalsocalculatedinthepaper[248].8.FuturedevelopmentandresearchHEAsarebasedonthemulti-principalelementsconcept,whichhasstimulatedrisinginterestsforbasicscienceandapplications.ThepotentialapplicationsofHEAsaremainlybasedontheiruniqueproperties.Theirexcellenthigh-temperaturepropertiesmayprovidethepotentialtoreplacetheNi-basedsuperalloy,e.g.,AlCoCrFeNi,whichisexpectedtobeoflighterweightandlowercost.ItisalsoreportedthatHEAscanbeusedasthermalbarriercoatingsfortheTi-basedalloysandadiffusionbarrierbetweenCuandSiintheintegratedcircuit(IC)industries.TheexcellentwearresistancemakesHEAsusefulformoldmaterials.TherearealsoreportsusingHEAsinthe4-mode-ringlaserGyro.TheHEAscarbidesandnitridesarepotentiallyapplicableascoatingsforthebiomedicalmaterials,andthenearconstantresistivityin4.2–360KcouldmaketheAl2.08CoCrFeNiHEAusefulforelectronic82Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93AlxCoCryFeNi honogenized at 1100Co bcc bcc+fcc fccy=2.0y=1.5y=1.0y=0.50.00.20.40.60.81.01.21.41.61.82.0Al ratio (x)Fig.7.10.thecalculatedtransitionrangesoftheAlxCoCryFeNialloyshomogenizedat1100°C[248].deviceparts.Inthischapter,futuredirectionsareproposedinthebroadareasoffundamentalunder-standing,processingandapplications.8.1.FundamentalunderstandingofHEAsQuantifyingtheentropysourcesofHEAsremainstobethemostimportanttopicinfundamentalunderstandingofHEAformation.Inthisregard,inelasticneutronscatteringandnuclearresonantinelasticX-rayscatteringwillbeveryusefultechniquestomeasurephononspectraasdemonstratedbyFultzetal.inanumberoforderedanddisorderedalloys[272–276,289–291].Inrealsolidsolutionalloysorderingand/orclusteringalwaysdestroyconfigurationalentropyofmixing,soprecisecalcu-lationofconfigurationalentropyofmixinginHEAsisneeded.Typicalmethodsforthispurposein-cludeclustervariationmethod(CVM),generalalgorithms,andMonteCarlosimulations.Fromthepointofviewofmaterialsdesign,oneneedsphasediagraminformation,e.g.thephasefieldofahigh-entropyphaseinthespaceofcompositionandtemperatureaswellasimportantcom-petingorderedcompoundsphase(s).Inordertoexpeditephasediagramdetermination,theapproachthatcombinesDFTcalculations,high-throughputexperiments[292,293]andCALPHADmodelingisawisechoiceasreportedpreviously[38,294–298].Establishingreliableself-consistentthermodynamicdatabaseusingtheCALPHADmethodnotonlyfacilitatesphasediagramvisualizationformorethan5componentsystemsbutalsocanbeusedtodirectlycalculatetheentropy,enthalpyandGibbsfreeen-ergyofthehigh-entropyphaseasafunctionoftemperatureandcomposition.IthasbeencriticallyclaimedthereexistseverelatticedistortioneffectandsluggishdiffusioneffectinHEAs.However,precisemeasurementstoquantifytheseeffectsarestilllacking.Computersimula-tionsinthisregardwillbeimportant.However,calculatingthediffusioncoefficientofHEAsusingDFTmethodscanbeadauntingtaskduetothelargeconfigurationalspaceinthehighlyconcentratedalloys.AdditionaltopicsinaddressingfundamentalunderstandingofHEAsare:(1)Quantifyingtheenthalpyofthehigh-entropyphasesinceitistheGibbsfreeenergythatdeter-minesthephasestabilityatconstanttemperatureandpressure.Experimentalmeasurementssuchasheatofsolutionandheatcapacityareimportant.ComputationalstudyusingDFTandCALPHADwillbeveryusefultocalculatehowenthalpyofmixingchangeswithcomposition,whichinturncanhelpidentifyHEAcomposition.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9383(2)HEAshavethehighchemicaldisorder.Amorphousalloyshavehightopologicaldisorder.Hence,HEAsarealloysjustinbetweentheconventionalalloysandtheamorphousalloys.Theplasticdeformationstructuralunitsaretypicallydislocationsandtwinsintheconventionalcrystallinealloys,andtypicallySTZsandTTZsintheamorphousalloys.Thus,whatwouldbethedeforma-tionmechanisminHEAs?DedicatedexperimentsandsimulationsonplasticdeformationofHEAsareneeded,forexample,usingthesingle-crystalofHEAswithBCCandFCCstructures,althoughtherehaveaccumulatedreportsontension,compression,andhardnessexperimentsonHEAs.(3)Themicro-andnano-structuresofHEAsafterplasticdeformationmayrequirefurtherstudybythehigh-resolutionTEM,neutrondiffraction,andsynchrotronhigh-energyX-raydiffractions,etc.,toprovidethedeformationmechanismofHEAs.(4)LimitedresultsaboutthefatiguebehaviorsfortheHEAshavebeenobtained.MoreworkontheBCC,BCC+FCC,andFCCstructuredHEAsneedstobedone,especiallythehigh-temperaturefatigueproperties.(5)TostudytheenvironmentalpropertiesofHEAs,dedicatedexperimentsinair,moistureair,watervapor,CO,hydrogen,H2Setc.atelevatedtemperatureneedtobeconducted.(6)CreepperformanceofHEAsasstructuralmaterialsneedtobestudied.8.2.ProcessingandcharacterizationofHEAsMaterialspropertiesaredictatedbytheirmicrostructure.ThereisnoexceptionforHEAs.Themicrostructurecanbemanipulatedbyfabricationmethods(seeSection3),plasticdeformation(e.g.rolling,forging),andheattreatment.Castingandpowdermetallurgycanbeemployedtoobtainnearnetshapeproducts.ThoroughcharacterizationofthemicrostructureofHEAsin3-dimensionareimportantininterpretingmaterialspropertiessuchasfracturetoughnessandfracturemechanisms.Theprogressin3Dmicrostructurecharacterizationanddigitalconstructioncanbefoundinreviewarticles[299,300]).Inthisregard,grainboundarycharacterandchemistrydistribution(forreviewssee[299,301])areimportantfutureresearchtopicsforHEAs.Forexample,controlledthermo-mechan-icalprocessingcanbeusedtopromoteformationofpreferredgraintextureand/orgrainboundarycharacterdistribution.Inaddition,listedbelowaresomeusefultopics:(1)Thenano-sizedpillarscanbefabricatedfromtheas-preparedHEAsusingfocusionbeams(FIB),andthepillarsofsinglephasewithdesirablepropertiescanbemanufactured,andtheycanbetheGenesforthematerials.ThenthenewmaterialscanbedesignedbasedonthepropertiesoftheGenes.(2)Largeplasticdeformationcanbeusedtorefinethestructuretosubmicro-ornano-scaleusingequalchannelangularpressingmethod.PorousHEAsmaterialswithcontrollableporesizesinmicro-tonano-sizedscalecanbeprocessedusingchemicalorcastingmethods.TheporousHEAswouldbeusedasrobustfiltersforpurifyingthewaterandairorthehotsmokesatele-vatedtemperaturesandhostileenvironment.(3)Detaileddeformationandfracturemechanismshavenotbeenclearlyidentified.Thedislocationstructuresbeforeandafterthefracturewillneedtobeinvestigated.Understandingtheinterac-tionbetweendislocationsandsoluteswillprovideinsightsintotheeffectsofthealloyingele-mentsontheductilityofthealloy.Inaddition,forfatiguestudy,onlylimiteddatawerereportedandonlyatroomtemperature,butfatiguebehavioratelevatedtemperaturesneedstobeexplored.Itisbelievedthatareductioninthenumberofthedefects,suchasaluminumoxideinclusionsandmicro-cracks,mayresultinastrongfatiguebehavior.HowtoreducethesedefectsisparticularlycrucialforimprovingthefatigueresistanceofHEAs.8.3.ApplicationsofHEAsHEAsholdthepotentialinawiderangeofapplicationssuchasfunctionalandstructuralmaterials.TheconceptofHEAscanalsobeappliedtoceramics,polymerandevenliquid.AsanextensiontoSec-tion4,herearesomepromisingopportunitiesforHEAs:84Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93(1)HEAscanbeusedasthetransitionallayerbetweenthetwotypesofalloys,e.g.,theHEAsolderusedforweldingpuretitaniumandchromium–nickel–titaniumstainlesssteel[302];andHEAsbrazingfillermetalusedforweldingcementedcarbideandsteel,whichprovidesgoodflexibil-ityofthebrazingfillermetalandfavorablemanufactureandinstallationprocess[303].(2)HEAscanexhibitexcellentsuper-paramagneticproperties,ferromagneticproperties,andsoftmagneticproperties.(3)HEAscouldbeusedinthenuclearindustries.TheirmuchhighirradiationresistanceandhighcorrosionresistancewouldmakeHEAspotentialcandidatesforthecladdingmaterialsusedforthenuclearfuelsandhighpressurevessels.(4)Thehigh-entropyconceptcouldbeusedtosimulatethefissionprocessofnuclearreactors.Thenuclearfissionprocessisaprocesswithentropyincreasing,becausethetypesoftheelementsareincreasingwiththenuclearfissionreactions.(5)HEAsmaybeusedasheat-resistantorwear-resistantcoatings.NewtechnologiesareneededtomaketheHEAscoatingmoreuniformandwithhighcohesionwithsubstrates.(6)TherefractorymetalHEAsmaybeusedasthermalbarriercoatings,whichneedstobeinvestigated.(7)HEAscarbidesandnitrideswouldalsobeinterestingfortheiruniqueproperties.Theymayhavethestructuresofamorphousorsolidsolutions,andwithhighhardnessandstrength.Theymaypotentiallybeusableasdiffusionbarriers,andhardcoatingsonthetoolcuttingsteelsorthehighspeedsteels.Recentworkalsoshowsthatthehigh-entropycarbidesandnitridescanpotentiallybeusedasbiomedicalcoatings[151](8)ThespecialphysicalpropertiesoftheHEAs,e.g.,Al2.08CoCrFeNi,withnearconstantresistivitywouldmakethemusefulforelectronicapplications.Thus,thiskindofHEAsneedstobefurtherstudied.(9)Light-weightHEAscouldbeusedascasingsforthemobilefacilities,batteryanodematerials,andtransportationindustry.9.SummaryAsanewclassofmaterialsthatcontainmulti-principal-elements,HEAshavedemonstrateduniqueandattractiveengineeringproperties.Thepresentpaperhasreviewedtheformationcriteria,thermo-dynamics,processing,kinetics,mechanicalproperties,andcomputermodelingofHEAs,assumma-rizedasfollows:ThefourcoreeffectsoftheHEAshavebeensummarizedtounderstandtheHEAs;theparameters,suchas,enthalpyofmixing,atomicsizedifference,X,VEC,havebeenusedtopredictthephasefor-mationfortheHEAs.Multiple-processingmethods,suchasarcmelting,inductivemelting,sputter,lasercladding,andelectrochemical,havebeensummarized.TheHEAswithspecialpropertieshavebeenelaboratedonebyone,e.g.,thesuperhighstrengthofBCCHEAs,andhighwearresistanceHEAs,highstrengthHEAsathightemperatures,Kondo-likebehaviorsHEAs,goodfatigueresistance,etc.TheplasticdeformationandfracturemechanismofHEAshavebeendiscussedfromthestandpointsofthecracklingnoiseandtheserrationsonthestress–straincurves.High-entropyBMGslackbothlong-rangechemicalorderandthetopologicalorder,whichenablethempossessspecialstructuresandproperties.Understandingtheformationmechanismofhigh-en-tropyBMGsishelpfultogainnewinsightsintotheformationmechanismofmetallicglassesandoth-ersinthematerials.Preliminarycomputersimulationsandmodelingworkhavebeenbrieflysummarized,andmoreef-fortsinthistopicneedtobecarriedoutsothatthefundamentalsandstructuresoftheHEAscanbewellunderstood.Insummary,HEAsprovideanewchallengetothematerialsscientists.Withthein-depthworkonHEAs,moreandmorespecialpropertiesofHAEswillbecharacterizedanddevelopedinthefuture.WiththeadvancedtechnologiesdevelopedfortheprocessingandcharacterizationsofHEAs,1-dimen-sional(1-d),HEAwires;2-dimensional(2-d),HEAfilms;and3-dimensional(3-d),bulkHEAsamplesY.Zhangetal./ProgressinMaterialsScience61(2014)1–9385willbefabricatedandstudied.Thephase-formationthermodynamics,kineticsandprocessing,andcomputermodelingandsimulations,etc.,forHEAswillbeextensivelystudied,whichwillleadthematerialsscientistsintoanewandwonderfulmaterials-scienceworld.DisclaimerThisreportwaspreparedasanaccountofworksponsoredbyanagencyoftheUnitedStatesGov-ernment.NeithertheUnitedStatesGovernmentnoranyagencythereof,noranyoftheiremployees,makesanywarranty,expressorimplied,orassumesanylegalliabilityorresponsibilityfortheaccu-racy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrep-resentsthatitsusewouldnotinfringeprivatelyownedrights.Referencehereintoanyspecificcommercialproduct,process,orservicebytradename,trademark,manufacturer,orotherwisedoesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbytheUnitedStatesGovernmentoranyagencythereof.Theviewsandopinionsofauthorsexpressedhereindonotnec-essarilystateorreflectthoseoftheUnitedStatesGovernmentoranyagencythereof.AcknowledgementsTheauthorsareindebtedtoProf.G.L.Chen,whopassedawayin2011,forhispioneeringworkinHEAsandacademicguidance.TheauthorsarealsogratefultoProf.W.K.Wang,Prof.W.H.Wang,Prof.Y.Li,Prof.H.A.Davies,Prof.Z.Q.Sun,Prof.T.G.Nieh,Prof.X.D.Hui,Prof.J.P.Lin,Dr.Y.Q.Cheng,andDr.G.Y.Wangforvaluablediscussion,commentsandadvices.Z.Y.isgratefultothefinancialsupportoftheNationalNaturalScienceFoundationofChina(GrantNos.50971019,51010001and51001009),111Project(B07003)andProgramforChangjiangScholarsandInnovativeResearchTeaminUniver-sity.P.K.L.appreciatesthesupportfromtheUSNationalScienceFoundation(DMR-0909037,CMMI-0900271,andCMMI-1100080),theDepartmentofEnergy(DOE),OfficeofNuclearEnergy’sNuclearEnergyUniversityProgram(NEUP)00119262,andtheDOE,OfficeofFossilEnergy,NationalEnergyTechnologyLaboratory(DE-FE-0008855).K.A.DandP.K.LthankDOEforthesupportthroughprojectDE-FE-0011194withtheprojectmanager,S.Markovich.M.C.GandP.K.LverymuchappreciatesthesupportfromtheU.S.ArmyResearchOfficeproject(W911NF-13-1-0438)withtheprogrammanager,S.N.Mathaudhu.M.C.G.acknowledgessupportoftheInnovativeProcessingandTechnologiesProgramoftheNationalEnergyTechnologyLaboratory’s(NETL)StrategicCenterforCoalundertheREScon-tractDE-FE-0004000.ThisworkusedthecomputingfacilityatTexasAdvancedComputingCenter(TACC)throughAward#DMR120048bytheExtremeScienceandEngineeringDiscoveryEnvironment(XSEDE),whichissupportedbyNationalScienceFoundationgrantnumberOCI-1053575.References[1]CantorB,ChangITH,KnightP,VincentAJB.Microstructuraldevelopmentinequiatomicmulticomponentalloys.MaterSciEng,A2004;375–377:213–8.[2]YehJW,ChenSK,LinSJ,GanJY,ChinTS,ShunTT,etal.Nanostructuredhigh-entropyalloyswithmultipleprincipalelements:novelalloydesignconceptsandoutcomes.AdvEngMater2004;6(5):299–303.[3]MaD,TanH,ZhangY,LiY.Correlationbetweenglassformationandtypeofeutecticcoupledzoneineutecticalloys.MaterTrans2003;44(10):2007–10.[4]ZhangY,YangX,LiawPK.Alloydesignandpropertiesoptimizationofhigh-entropyalloys.JOM2012;64(7):830–8.[5]ZhangY,MaSG,LiawPK,TangZ,ChengYQ.Broadguidelinesinpredictingphaseformationofhigh-entropyalloys,MRSCommunications,submittedforpublication.[6]MaSG,ZhangY,LiawPK.DampingbehaviorsofAlxCoCrFeNihigh-entropyalloysbyadynamicmechanicalanalyzer,JAlloyCompd,inpreparation.[7]ZhangY,ZuoTT,LiawPK,ChengYQ.High-entropyalloyswithhighsaturationmagnetizationandelectricalresistivity.SciRep2013;3:1455.http://dx.doi.org/10.1038/srep01455.[8]YangX,ZhangY,LiawPK.MicrostructureandcompressivepropertiesofTiZrNbMoVxhigh-entropyalloys.ProcEng2012:292–8.[9]YehJW.Recentprogressinhigh-entropyalloys.PresentationatChangshameeting;2011.[10]ZhangY,WangXF,ChenGL,QiaoY.EffectofTionmicrostructureandpropertiesofCoCrCuFeNiTixhigh-entropyalloys.AnnChimSciMatér2006;31(6):699–709.[11]YehJW,LinSJ,ChinTS,GanJY,ChenSK,ShunTT,etal.FormationofsimplecrystalstructuresinCu–Co–Ni–Cr–Al–Fe–Ti–Valloyswithmultiprincipalmetallicelements.MetallMaterTransA2004;35(8):2533–6.86Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93[12]ZhouYJ,ZhangY,WangYL,ChenGL.SolidsolutionalloysofAlCoCrFeNiTixwithexcellentroom-temperaturemechanicalproperties.ApplPhysLett2007;90(18):181904.[13]WangXF,ZhangY,QiaoY,ChenGL.NovelmicrostructureandpropertiesofmulticomponentCoCrCuFeNiTixalloys.Intermetallics2007;15(3):357–62.[14]SenkovON,WilksGB,ScottJM,MiracleDB.MechanicalpropertiesofNb25Mo25Ta25W25andV20Nb20Mo20Ta20W20refractoryhighentropyalloys.Intermetallics2011;19:698–706.[15]SinghS,WanderkaN,MurtyBS,GlatzelU,BanhartJ.Decompositioninmulti-componentAlCoCrCuFeNihigh-entropyalloy.ActaMater2011;59:182–90.[16]SenkovON,WilksGB,MiracleDB,ChuangCP,LiawPK.Refractoryhigh-entropyalloys.Intermetallics2010;18(9):1758–65.[17]ZhangY,ZhouYJ,LinJP,ChenGL,LiawPK.Solid-solutionphaseformationrulesformulti-componentalloys.AdvEngMater2008;10(6):534–8.[18]LiC,LiJC,ZhaoM,JiangQ.Effectofalloyingelementsonmicrostructureandpropertiesofmultiprincipalelementshigh-entropyalloys.JAlloyCompd2009;475(1–2):752–7.[19]ChangHW,HuangPK,DavisonA,YehJW,TsauCH,YangCC.NitridefilmsdepositedfromanequimolarAlCrMoSiTialloytargetbyreactivedirectcurrentmagnetronsputtering.ThinSolidFilms2008;516(18):6402–8.[20]ZhangY,ChenGL,GanCL.PhasechangeandmechanicalbehaviorsofTixCoCrFeNiCu1ÀyAlyhighentropyalloys.JASTMInt2010;7(5):102527.[21]ZhangY.Mechanicalpropertiesandstructuresofhighentropyalloysandbulkmetallicglassescomposites.MaterSciForum2010;654–656:1058–61.[22]ZhangY,ZhouYJ.Solidsolutionformationcriteriaforhighentropyalloys.MaterSciForum2007;561–565:1731–9.[23]ZhangY,ZhouYJ,HuiXD,WangML,ChenGL.Minoralloyingbehaviorinbulkmetallicglassesandhigh-entropyalloys.SciChina,SerG2008;51(4):427–37.[24]CaiH,ZhangH,ZhengH.Softmagneticdevicesappliedforlowzeroexcursionfour-moderinglasergyro.IEEETransMagn2007;43(6):2686–8.[25]ZhangH,PanY,HeY,JiaoH.Microstructureandpropertiesof6FeNiCoSiCrAlTihigh-entropyalloycoating.ApplSurfSci2011;257(6):2259–63.[26]LinC,TsaiH,BorH.Effectofagingtreatmentonmicrostructureandpropertiesofhigh-entropyCu0.5CoCrFeNialloy.Intermetallics2010;18:1244–50.[27]LinC,TsaiH.Evolutionofmicrostructure,hardness,andcorrosionpropertiesofhigh-entropyAl0.5CoCrFeNialloy.Intermetallics2011;19(3):288–94.[28]YangX,ZhangY.Predictionofhigh-entropystabilizedsolidsolutioninmulti-componentalloys.MaterPhysChem2012;132(2–3):233–8.[29]GreerAL.Confusionbydesign.Nature1993;366:303.[30]CantonB,AudebertF,GalanoM,KimKB,WarrenPJ.Novelmulticomponentalloys.WarrenJMetastableNanocrystMater2005;24–25:1–6.[31]CantonB.Stableandmetastablemulticomponentalloys.AnnChimSciMater2007;32:245–56.[32]YehJW.Privatediscussion;2012.[33]CantorB.High-entropyalloys.In:BuschowKHJ,CahnRW,FlemingsMC,IlschnerB,KramerEJ,MahajanS,VeyssièreP,editors.Encyclopediaofmaterials:scienceandtechnology.ISBN978-0-08-043152-9(lastupdateOctober2011).[34]TakeuchiA,ChenN,WadaT,YokoyamaY,KatoH,InoueA,etal.Pd20Pt20Cu20Ni20P20high-entropyalloyasabulkmetallicglassinthecentimeter.Intermetallics2011;19(10):1546–54.[35]ZhaoK,XiaXX,BaiHY,ZhaoDQ,WangWH.Roomtemperaturehomogeneousflowinabulkmetallicglasswithlowglasstransitiontemperature.ApplPhysLett2011;98:141913.[36]GaoXQ,ZhaoK,KeHB,DingDW,WangWH,BaiHY.Highmixingentropybulkmetallicglasses.JNon-CrystSolids2011;357:3557–60.[37]YehJW.Recentprogressinhigh-entropyalloys.AnnChimSciMater2006;31(6):633–48.[38]GaoMC,ÜnlüN,MihalkovicM,WidomM,ShifletGJ.Glassformation,phaseequilibria,andthermodynamicassessmentoftheAl–Ce–Cosystemassistedbyfirst-principlesenergycalculations.MetallMaterTransA2007;38(10):2540–51.[39]MartyushevLM,SeleznevVD.Maximumentropyproductionprincipleinphysics,chemistryandbiology.PhysRep2006;426:1–45.[40]LucasMS,WilksGB,MaugerL,MunozJA,SenkovON,MichelE,etal.Absenceoflong-rangechemicalorderinginequimolarFeCoCrNi.ApplPhysLett2012;100(25).251907-4.[41]YehJW,ChangSY,HongYD,ChenSK,LinSJ.AnomalousdecreaseinX-raydiffractionintensitiesofCuNiAlCoCrFeSialloysystemswithmulti-principalelements.MaterChemPhys2007;103:41–6.[42]RanganathanS.Alloyedpleasures:multimetalliccocktails.CurrSci2003;8:1404–6.[43]YangX,ZhangY.CryogenicresistivitiesofNbTiAlVTaLax,CoCrFeNiCuandCoCrFeNiAlhighentropyalloys.In:ZhangYF,SuCW,XiaH,XiaoPF,editors.Advancedmaterialsandprocessing2010,proceedingsofthe6thinternationalconferenceonICAMP,Yunnan,19–3July2010.[44]KaoYF,ChenTJ,ChenSK,YehJW.MicrostructureandmechanicalpropertyofAs-cast,homogenized,anddeformedAlxCoCrFeNi(06x62)high-entropyalloys.JAlloyCompd2009;488:57–64.[45]TongCJ,ChenYL,YehJW,LinSJ,ChenSK,ShunTT,etal.MicrostructurecharacterizationofAlxCoCrCuFeNihigh-entropyalloysystemwithmultiprincipalelements.MetallMaterTransA2005;36(4):881–93.[46]KaoYF,ChenSK,SheuJH,LinJT,LinWE,YehJW,etal.Hydrogenstoragepropertiesofmulti-principal-componentCoFeMnTixVyZrzalloys.IntJHydrogenEnergy2010;35:9046–59.[47]UkaiS,MizutaS,FujiwaraM,OkudaT,KobayashiT.Developmentof9Cr-ODSmartensiticsteelcladdingsforfuelpinsbymeansofferritetoaustenitetransformation.JNuclSciTechnol2002;39(7):778–88.[48]TomotaY,SuzukiT,KanieA,ShiotaY,UnoM,MoriaiA,etal.Insituneutrondiffractionofheavilydrawnsteelwireswithultra-highstrengthundertensileloading.ActaMater2005;53:463–7.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9387[49]ChoiJK,SeoDH,LeeJS,UmKK,Wung-YongChooWY.Formationofultrafineferritebystrain-induceddynamictransformationinplainlowcarbonsteel.ISIJInt2003;43(5):746–54.[50]TengZK,LiuCT,GhoshG,LiawPK,FineME.EffectsofAlonthemicrostructureandductilityofNiAl-strengthenedferriticsteelsatroomtemperature.Intermetallics2010;18:1437–43.[51]TengZK,MillerMK,GhoshG,LiuCT,HuangS,RussellKF,etal.CharacterizationofnanoscaleNiAl-typeprecipitatesinaferriticsteelbyelectronmicroscopyandatomprobetomography.ScriptaMater2010;63:61–4.[52]HuangS,WorthingtonDL,AstaM,OzolinsV,GhoshG,LiawPK.Calculationofimpuritydiffusivitiesina-Feusingfirst-principlesmethods.ActaMater2010;58:1982–93.[53]TengZK,LiuCT,MillerMK,GhoshG,KenikEA,HuangS,etal.RoomtemperatureductilityofNiAl-strengthenedferriticsteels:effectsofprecipitatemicrostructure.MaterSciEng,A2012;54:22–7.[54]TengZK,ZhangF,MillerMK,LiuCT,HuangS,ChouYT,etal.ThermodynamicmodelingandexperimentalvalidationoftheFe–Al–Ni–Cr–Moalloysystem.MaterLett2012;71:36–40.[55]HuangS,BrownD,ClausenB,TengZK,GaoYF,LiawPK.Insituneutron-diffractionstudiesonthecreepbehaviorofaferriticsuperalloy.MetallMaterTransA2012;43:1497–508.[56]HuangS,GhoshG,LiX,IlavskyJ,TengZK,LiawPK.EffectofAlontheNiAl-typeB2PrecipitatesinFerriticSuperalloys.MetallMaterTransA2012;43:3423–7.[57]TengZK,GhoshG,MillerMK,HuangS,ClausenB,BrownDW,etal.Neutron-diffractionstudyandmodelingofthelatticeparametersonaNiAl-precipitatestrengthenedFe-basedalloy.ActaMater2012;60:5362–9.[58]TengZK,ZhangF,MillerMK,LiuCT,HuangS,ChouYT,etal.NewNiAl-strengthenedferriticsteelswithbalancedcreepresistanceandductility,designedbycouplingthermodynamiccalculationswithfocusedexperiments.Intermetallics2012;29:110–5.[59]DingH,HuangS,GhoshG,LiawPK,AstaM.AComputationalStudyofImpurityDiusivitiesfor5dTransitionMetalSolutesin-Fe.ScriptaMater2012;67:732–5.[60]MiaoWF,LaughlinDE.Precipitationhardeninginaluminumalloy6022.ScriptaMater1999;40:7.[61]DeligianniDD,KatsalaN,LadasS,SotiropoulouD,AmedeeJ,MissirlisYF.EffectofsurfaceroughnessofthetitaniumalloyTi–6Al–4Vonhumanbonemarrowcellresponseandonproteinadsorption.Biomaterials2001;22:1241–51.[62]AokiK.DuctilizationofL12intermetalliccompoundNi3Albymicroalloyingwithboron.MaterTrans,JIM1990;31:443–8.[63]SunC,GuoJT,TanM,LiH,WangS.EffectofCrandNbonmicrostructuresandmechanicalpropertiesofFe3Alalloys.ActaMetallSin1993;6:157–60.[64]KucD,BednarczykI,NiewieskiG.TheinfluenceofdeformationontheplasticityandstructureofFe3Al–5Cralloy.JAchievMaterManufEng2007;22:27–30.[65]InoueA.Stabilizationofmetallicsupercooledliquidandbulkamorphousalloys.ActaMater2000;48:279–306.[66]JohnsonWL.Bulkglass-formingmetallicalloys:scienceandtechnology.MRSBull1999:24.[67]WangWH,DongC,ShekCH.Bulkmetallicglasses.MaterSciEngR2004;44:45–89.[68]SchuhCA,HufnagelTC,RamamurtyU.Mechanicalbehaviorofamorphousalloys.ActaMater2007;55:4067–109.[69]MillerMK,LiawPK.Bulkmetallicglasses.NewYork:Springer;2007.[70]HuangR,SuoZ,PrevostJH,NixWD.Inhomogeneousdeformationinmetallicglasses.JMechPhysSolids2002;50:1011–27.[71]YuHB,WangWH,BaiHY,WuY,ChenMW.Relatingactivationofsheartransformationzonestorelaxationsinmetallicglasses.PhysRevB2010;81:220201R.[72]TrexlerMM,ThadhaniNN.Mechanicalpropertiesofbulkmetallicglasses.ProgMaterSci2010;55:759–839.[73]VitekV,EgamiT.Atomiclevelstressesinsolidsandliquids.PhysStatusSolidiB1987;144:145–56.[74]EgamiT.Atomiclevelstresses.ProgMaterSci2011;56:637–53.[75]SchroersJ.Processingofbulkmetallicglass.AdvMater2010;22:1566–97.[76]HofmannDC,SuhJY,WiestA,DuanG,LindML,DemetriouMD,etal.Designingmetallicglassmatrixcompositeswithhightoughnessandtensileductility.Nature2008;451:1085–9.[77]QiaoJW,SunAC,HuangEW,ZhangY,LiawPK,ChuangCP.Tensiledeformationmicromechanismsforbulkmetallicglassmatrixcomposites:fromwork-hardeningtosoftening.ActaMater2011;59:4126–37.[78]QiaoJW,ZhangY,JiaHL,YangHJ,LiawPK,XuBS.Tensilesofteningofmetallic-glass-matrixcompositesinthesupercooledliquidregion.ApplPhysLett2012;100.121902-4.[79]WangFJ,ZhangY,ChenGL,DaviesHA.TensileandcompressivemechanicalbehaviorofaCoCrCuFeNiAl0.5highentropyalloy.IntJModPhysB2009;23:1254–9.[80]OliverWC,PharrGM.Animprovedtechniquefordetermininghardnessandelasticmodulususingloadanddisplacementsensingindentationexperiments.JMaterRes1992;7:1564–83.[81]GuoW,DmowskiW,NohJY,RackP,LiawPK,EgamiT.LocalAtomicStructureofaHigh-entropyAlloy:AnX-rayandneutronscatteringstudy.MetallMaterTransA2013;44:1994–7.[82]KaoSW,YehJW,ChinTS.Rapidlysolidifiedstructureofalloyswithuptoeightequal-molarelements–asimulationbymoleculardynamics.JPhys–CondensMatter2008:20.[83]GrossoMF,BozzoloG,MoscaHO.Modelingofhighentropyalloysofrefractoryelements.PhysicaB2012;407(16):3285–7.[84]HillTL.Anintroductiontostatisticalthermodynamics.NewYork:DoverPublicationsInc;1986.[85]GearhartCA.Einsteinbefore1905:theearlypapersonstatisticalmechanics.AmJPhys1990;58(5):468–80.[86]RuffaAR.Thermalpotential,mechanicalinstability,andmeltingentropy.PhysRevB1982;25(9):5895–900.[87]OrianiRA.Thermodynamicsofmetallicsolutions.AdvChemPhys2007;2:119–46.[88]TakeuchiA,InoueA.Calculationsofmixingenthalpyandmismatchentropyforternaryamorphousalloys.MaterTrans,JIM2000;41(11):1372–8.[89]TakeuchiA,InoueA.Quantitativeevaluationofcriticalcoolingrateformetallicglasses.MaterSciEng,A2001;304–306:446–51.[90]GuoS,LiuCT.Phasestabilityinhighentropyalloys:formationofsolid-solutionphaseoramorphousphase.ProgNatSci:MaterInt2012;21:433–46.88Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93[91]MiracleDB,SanderWS,SenkovON.Theinfluenceofefficientatomicpackingontheconstitutionofmetallicglasses.PhilosMag2003;83(20):2409–28.[92]TakeuchiA,InoueA.Classificationofbulkmetallicglassesbyatomicsizedifference,heatofmixingandperiodofconstituentelementsanditsapplicationtocharacterizationofthemainalloyingelement.MaterTrans2005;46(12):2817–29.[93]RenB,LiuZX,LiDM,ShiL,CaiB,WangMX.EffectofelementalinteractiononmicrostructureofCuCrFeNiMnhighentropyalloysystem.JAlloyCompd2010;493:148–53.[94]ZhangKB,FuZ.EffectsofannealingtreatmentonphasecompositionandmicrostructureofCoCrFeNiTiAlxhigh-entropyalloys.Intermetallics2012;22:24–32.[95]Hume-RotheryW,SmallmanRE,HaworthCW.Thestructureofmetalsandalloys.TheInstituteofMetals,1CarltonHouseTerrace,LondonSW1Y5DB,UK,1988.[96]GschneidnerKA,SubramanianPR.In:MassalskiTB,editor.Binaryalloyphasediagrams.MetalsPark(OH):ASM;1986.[97]GuoS,NgC,LuJ,LiuCT.Effectofvalenceelectronconcentrationonstabilityoffccorbccphaseinhighentropyalloys.JApplPhys2011;109:103505.[98]WilkeCR,ChangP.Correlationofdiffusioncoefficientsindilutesolutions.AIChEJ1955;1:264–70.[99]ChenYY,DuvalT,HungUD,YehJW,ShihHC.Microstructureandelectrochemicalpropertiesofhighentropyalloys—acomparisonwithtype-304stainlesssteel.CorrosSci2005;47(9):2257–79.[100]TsaiCW,TsaiMH,YehJW,YangCC.EffectoftemperatureonmechanicalpropertiesofAl0.5CoCrCuFeNiwroughtalloy.JAlloyCompd2010;490(1–2):160–5.[101]DistanovVE,NenashevBG,KirdyashkinAG,SerboulenkoMG.Proustitesingle-crystalgrowthbytheBridgman-StockbargermethodusingACRT.JCrystGrowth2002;235:457–64.[102]VolzaMP,SchweizerbM,KaisercN,CobbaSD,VujisicdL,MotakefdS,etal.BridgmangrowthofdetachedGeSicrystals.JCrystGrowth2002;237–239:1844–8.[103]WalkeraJS,HenryD,BenHadidH.MagneticstabilizationoftheBuoyantconvectionintheliquid-encapsulatedCzochralskiprocess.JCrystGrowth2002;243:108–16.[104]LiX,FautrelleY,RenZM.Influenceofanaxialhighmagneticfieldontheliquid–solidtransformationinAl–Cuhypoeutecticalloysandonthemicrostructureofthesolid.ActaMater2007;55(4):1377–86.[105]ZhangY,MaSG,QiaoJW.MorphologytransitionfromdendritestoequiaxedgrainsforAlCoCrFeNihigh-entropyalloysbycoppermoldcastingandBridgmansolidification.MetallMaterTransA2011;43(8):2625–30.[106]ZhangY.Processingandpropertiesofhighentropyalloys.TMS2011anualmeetingandexhibition2011.Invitedpresentation.[107]WangLM,ChenCC,YehJW,KeST.ThemicrostructureandstrengtheningmechanismofthermalspraycoatingNixCo0.6Fe0.2CrySizAlTi0.2high-entropyalloys.MaterChemPhys2011;126:880–5.[108]http://www.tsetinc.com/ceramicoat.htm.[109]https://wwwliaorg/laserinsights/tag/laser-cladding/.[110]ZhangH,PanY,HeY.Effectsofannealingonthemicrostructureandpropertiesof6FeNiCoCrAlTiSihigh-entropyalloycoatingpreparedbylasercladding.JThermSprayTechnol2011;20(5):1049–55.[111]https://www.lia.org/blog/2011/05/high-performance-laser-cladding/#more-1035.[112]SchnellA,KurzW.EpitaxialdepositionofMCrAlYcoatingsonaNi-basesuperalloybylasercladding.ScriptaMater2003;49:705–9.[113]ManHC,ZhangS,ChengFT,YueTM.MicrostructureandformationmechanismofinsitusyntheiszedTiC/TisurfaceMMConTi–6Al–4Vbylasercladding.ScriptaMater2001;44:2801–7.[114]SuryanarayanaC.Mechanicalalloyingandmilling.ProgMaterSci2001;46:1–184.[115]MurtyBS,RanganathanS.Novelmaterialssynthesisbymechanicalalloyingmilling.IntMaterRev1998;43(3):101–41.[116]http://what-when-how.com/materialsparts-and-finishes/mechanical-alloying/.[117]ChenYL,TsaiCW,JuanCC,ChuangMH,YehJW,ChinTS,etal.AmorphizationofequimolaralloyswithHCPelementsduringmechanicalalloying.JAlloyCompd2010;506:210–5.[118]WeeberAW,BakkerH,HeijligersHJM,BastinGF.CompositionalanalysisofNiZrpowderduringamorphizationbymechanicalalloying.EurophysLett1987;3(12):1261–5.[119]ZhouGF,BakkerH.Influenceofmechanicalmillingonmagneticpropertiesofintermetalliccompounds.MaterTrans,JIM1995;36(2):329–40.[120]VaralakshmiS,KamarajM,MurtyBS.FormationandstabilityofequiatomicandnonequiatomicnanocrystallineCuNiCoZnAlTihigh-entropyalloysbymechanicalalloying.MetallMaterTransA2010;41A:2703–9.[121]ChangSY,LinSY,HuangYC,WuCL.Mechanicalproperties,deformationbehaviorsandinterfaceadhesionof(AlCrTaTiZr)Nxmulti-componentcoatings.SurfCoatTechnol2010;204:3307–14.[122]DoliqueV,ThomannAL,BraultP.High-entropyalloysdepositedbymagnetronsputtering.IEEETransPlasmaSci2011;39(11):2478–9.[123]http://www.tcbonding.com/sputtering.html.[124]LinMI,TsaiMH,ShenWJ,YehJW.Evolutionofstructureandpropertiesofmulti-component(AlCrTaTiZr)Oxfilms.ThinSolidFilms2010;518:2732–7.[125]YaoCZ,ZhangP,LiuM,LiGR,YeJQ,LiuP,etal.ElectrochemicalpreparationandmagneticstudyofBi–Fe–Co–Ni–Mnhighentropyalloy.ElectrochimActa2008;53:8359–65.[126]SenkovON,ScottJM,SenkovaSV,MiracleaDB,WoodwardCF.Microstructureandroomtemperaturepropertiesofahigh-entropyTaNbHfZrTialloy.JAlloyCompd2011;509:6043–8.[127]SenkovON,WoodwardCF.MicrostructureandpropertiesofarefractoryNbCrMo0.5Ta0.5TiZralloy.MaterSciEng,A2011;529:311–20.[128]SenkovON,ScottJ,SenkovaS,MeisenkothenF,MiracleD,WoodwardC.MicrostructureandelevatedtemperaturepropertiesofarefractoryTaNbHfZrTialloy.JMaterSci2012;47(9):4062–74.[129]WangFJ,ZhangY,ChenGL,DaviesHA.CoolingrateandsizeeffectonthemicrostructureandmechanicalpropertiesofAlCoCrFeNihighentropyalloy.JEngMaterTechnol2009;131:034501–3.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9389[130]TongCJ,ChenMR,ChenSK,YehJW,ShunTT,LinSJ,etal.MechanicalperformanceoftheAlxCoCrCuFeNihigh-entropyalloysystemwithmultiprincipalelements.MetallMaterTransA2005;36:1263–71.[131]KuznetsovAV,ShaysultanovDG,StepanovND,SalishchevGA,SenkovON.TensilepropertiesofanAlCrCuNiFeCohigh-entropyalloyinAs-castandwroughtconditions.MaterSciEng,A2012;533:107–18.[132]ShunTT,DuYC.MicrostructureandtensilebehaviorsofFCCAl0.3CoCrFeNihighentropyalloy.JAlloyCompd2009;479(1–2):157–60.[133]ZhuJM,FuHM,ZhangHF,WangAM,LiH,HuZQ.MicrostructuresandcompressivepropertiesofmulticomponentAlCoCrFeNiMoxalloys.MaterSciEng,A2010;527(26):6975–9.[134]ZhuJM,FuHM,ZhangHF,WangAM,LiH,HuZQ.MicrostructureandcompressivepropertiesofmultiprincipalcomponentAlCoCrFeNiCxalloys.JAlloyCompd2011;509(8):3476–80.[135]MaSG,ZhangY.EffectofNbadditiononthemicrostructureandpropertiesofAlCoCrFeNihighentropyalloys.MaterSciEng,A2012;532:480–6.[136]ZhouYJ,ZhangY,KimTN,ChenGL.Microstructurecharacterizationsandstrengtheningmechanismofmulti-principalcomponentAlCoCrFeNiTi0.5solidsolutionalloywithexcellentmechanicalproperties.MaterLett2008;62:2673–6.[137]QiaoJW,MaSG,HuangEW,ChuangCP,LiawPK,ZhangY.MicrostructuralcharacteristicsandmechanicalbehaviorsofAlCoCrFeNihigh-entropyalloysatambientandcryogenictemperatures.MaterSciForum2011;688:419–25.[138]LaktionovaMA,TabchnikovaED,TangZ,LiawPK.Mechanicalpropertiesofthehigh-entropyalloyAg0.5CoCrCuFeNiattemperaturesof4.2-300K.LowTempPhys2013;39:630–2.[139]HemphillMA,YuanT,WangGY,YehJW,TsaiCW,ChuangA,etal.FatiguebehaviorofAl0.5CoCrCuFeNihigh-entropyalloys.ActaMater2012;60(16):5723–34.[140]ChuangMH,TsaiMH,WangWR,LinSJ,YehJW.MicrostructureandwearbehaviorofAlxCo1.5CrFeNi1.5Tiyhigh-entropyalloys.ActaMater2011;59:6308–17.[141]WuJM,LinSJ,YehJW,ChenSK,HuangYS.AdhesivewearbehaviorofAlxCoCrCuFeNihigh-entropyalloysasafunctionofaluminumcontent.Wear2006;261:513–9.[142]ZhangKB,FuZY,ZhangJY,ShiJ,WangWM,WangH,etal.AnnealingonthestructureandpropertiesevolutionoftheCoCrFeNiCuAlhigh-entropyalloy.JAlloyCompd2010;502:295–9.[143]ChenSK,KaoYF.Near-constantresistivityin4.2–360KinaB2Al2.08CoCrFeNi.AIPAdv2012;2(1).012111-5.[144]ChouHP,ChangYS,ChenSK,YehJW.Microstructure,thermophysicalandelectricalpropertiesinAlxCoCrFeNi(06x62)high-entropyalloys.MaterSciEngB–AdvFunctSolid-StateMater2009;163(3):184–9.[145]YangX,ZhangY.CryogenicresistivitiesofNbTiAlVTaLax,CoCrFeNiCuandCoCrFeNiAlhighentropyalloys.AdvMaterProcess2010:51–4.[146]KaoYF,ChenSK,ChenTJ,ChuPC,YehJW,LinSJ.Electrical,magnetic,andhallpropertiesofAlxCoCrFeNihigh-entropyalloys.JAlloyCompd2011;509(5):1607–14.[147]LucasMS,MaugerL,MunozJA,XiaoY,SheetsAO,SemiatinSL,etal.Magneticandvibrationalpropertiesofhigh-entropyalloys.JApplPhys2011;109(7):07E307.[148]SinghS,WanderkaN,KieferK,SiemensmeyerK,BanhartJ.EffectofdecompositionoftheCr–Fe–CorichphaseofAlCoCrCuFeNihighentropyalloyonmagneticproperties.Ultramicroscopy2011;111(6):619–22.[149]BraicV,BalaceanuM,BraicM,VladescuA,PanseriS,RussoA.Characterizationofmulti-principal-element(TiZrNbHfTa)Nand(TiZrNbHfTa)Ccoatingsforbiomedicalapplications.JMechBehavBiomedMater2012;10:197–205.[150]LeeCP,ChenYY,HsuCY,YehJW,ShihHC.TheeffectofborononthecorrosionresistanceofthehighentropyalloysAl0.5CoCrCuFeNiBx.JElectrochemSoc2007;154(8):C424–30.[151]ChenST,TangWY,KuoYF,ChenSY,TsauCH,ShunTT,etal.Microstructureandpropertiesofage-hardenableAlxCrFe1.5MnNi0.5alloys.MaterSciEng,A2010;527:5818–25.[152]TsaoLC,ChenCS,ChuCP.AgehardeningreactionoftheAl0.3CrFe1.5MnNi0.5highentropyalloy.MaterDes2012;36:854–8.[153]TsaiMH,WangCW,TsaiCW,ShenWJ,YehJW,GanJY,etal.ThermalstabilityandperformanceofNbSiTaTiZrhigh-entropyalloybarrierforcoppermetallization.JElectrochemSoc2011;158(11):H1161–5.[154]ChangSY,ChenMK,ChenDS.Multiprincipal-elementAlCrTaTiZr-nitridenanocompositefilmofextremelyhighthermalstabilityasdiffusionbarrierforCumetallization.JElectrochemSoc2009;156(5):G37–42.[155]SethnaJP,DahmenKA,MyersCR.Cracklingnoise.Nature2001;410:242–50.[156]DahmenKA,Ben-ZionY,UhlJT.Micromechanicalmodelfordeformationinsolidswithuniversalpredictionsforstress–straincurvesandslipavalanches.PhysRevLett2009;102:175501.[157]DahmenKA,Ben-ZionY.Thephysicsofjerkymotioninslowlydrivenmagneticandearthquakefaultsystems.EncyclopediaofComplexityandSystemScience2009;5:5021–37.[158]CarpenterJH,DahmenKA.Barkhausennoiseandcriticalscalinginthedemagnetizationcurve.PhysRevB2003;67:020412.[159]CarpenterJH,DahmenKA,MillsAC,WeissmanMB,BergerA,HellwigO.History-inducedcriticalbehaviorindisorderedsystems.PhysRevB2005;72:052410.[160]WhiteRA,DahmenKA.Drivingrateeffectsoncracklingnoise.PhysRevLett2003;91(8):085702.[161]ZaiserM.Scaleinvarianceinplasticflowofcrystallinesolids.AdvPhys2006;55(1–2):185–245.[162]MiguelMC,VespignaniA,ZapperiS,WeissJ,GrassoJR.Intermittentdislocationflowinviscoplasticdeformation.Nature2001;410(6829):667–71.[163]WeissJ,GrassoJR,MiguelMC,VespignaniA,ZapperiS.Complexityindislocationdynamics:experiments.MaterSciEng,A2001;309–310:360–4.[164]RichetonT,DobronP,ChmelikF,WeissJ,LouchetF.Onthecriticalcharacterofplasticityinmetallicsinglecrystals.MaterSciEng,A2006;424(1–2):190–5.[165]RichetonT,WeissJ,LouchetF.Dislocationavalanches:roleoftemperature,grainsizeandstrainhardening.ActaMater2005;53(16):4463–71.[166]WeissJLahaieF,GrassoJR.Statisticalanalysisofdislocationdynamicsduringviscoplasticdeformationfromacousticemission.JGeophysRes2000;105(B1):433–42.90Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93[167]DimidukDM,WoodwardC,LeSarR,UchicMD.Scale-freeintermittentflowincrystalplasticity.Science2006;312(5777):1188–90.[168]BrinckmannS,KimJY,GreerJR.Fundamentaldifferencesinmechanicalbehaviorbetweentwotypesofcrystalsatthenanoscale.PhysRevLett2008;100(15):155502.[169]GreerJR,DeHossonJTM.Plasticityinsmall-sizedmetallicsystems:intrinsicversusextrinsicsizeeffect.ProgMaterSci2011;56(6):654–724.[170]UchicMD,ShadePA,DimidukDM.Plasticityofmicrometer-scalesinglecrystalsincompression.AnnuRevMaterRes2009;39(1):361–86.[171]KraftO,GruberPA,MönigR,WeygandD.Plasticityinconfineddimensions.AnnuRevMaterRes2010;40(1):293–317.[172]NganAHW,NgKS.Transitionfromdeterministictostochasticdeformation.PhilosMag2010;90(14):1937–54.[173]ZaiserM,SchwerdtfegerJ,SchneiderAS,FrickCP,ClarkBG,GruberPA,etal.Strainburstsinplasticallydeformingmolybdenummicro-andnanopillars.PhilosMag2008;88(30–32):3861–74.[174]KimJY,GreerJR.Tensileandcompressivebehaviorofgoldandmolybdenumsinglecrystalsatthenano-scale.ActaMater2009;57(17):5245–53.[175]KimJY,JangD,GreerJR.Tensileandcompressivebehavioroftungsten,molybdenum,tantalumandniobiumatthenanoscale.ActaMater2010;58(7):2355–63.[176]WeinbergerCR,CaiW.Surface-controlleddislocationmultiplicationinmetalmicropillars.ProcNatlAcadSci2008;105(38):14304–7.[177]DehmG.Miniaturizedsingle-crystallineFCCmetalsdeformedintension:newinsightsinsize-dependentplasticity.ProgMaterSci2009;54(6):664–88.[178]FriedmanN,JenningsAT,TsekenisG,KimJY,TaoM,UhlJT,etal.Statisticsofdislocationslipavalanchesinnanosizedsinglecrystalsshowtunedcriticalbehaviorpredictedbyasimplemeanfieldmodel.PhysRevLett2012;109:095507.[179]DahmenKA,Ben-ZionY,UhlJT.Asimpleanalytictheoryforthestatisticsofavalanchesinshearedgranularmaterials.NatPhys2011;7:554–7.[180]PetriA,BaldassarriA,DaltonF,PontualeG,PietroneroL,ZapperiS.Stochasticdynamicsofashearedgranularmedium.EurPhysJB2008;64:531–5.[181]BaldassarriA,DaltonF,PetriA,ZapperiS,PontualeG,PietroneroL.Brownianforcesinshearedgranularmatter.PhysRevLett2006;96:118002.[182]HartleyR.PhDthesis,Physics,DukeUniversity;2005.[183]DanielsKE,HaymanNW.Forcechainsinseismogenicfaultsvisualizedwithphotoelasticgranularshearexperiments.JGeophysRes2008;113:B11411.[184]AharonovE,SparksD.Shearprofilesandlocalizationinsimulationsofgranularmaterials.PhysRevE2002;65:051302.[185]SunBA,YuHB,JiaoW,BaiHY,ZhaoDQ,WangWH.Plasticityofductilemetallicglasses:aself-organizedcriticalstate.PhysRevLett2010;105(3):035501.[186]KimJY,GuX,WraithM,UhlJT,DahmenKA,GreerJR.Suppressionofcatastrophicfailureinmetallicglass–polyisoprenenanolaminatecontainingnanopillars.AdvFunctMater2012;22(9):1972–80.[187]AntonagliaJ,LiawPK,DahmenKA,inpreparation.[188]OrtínJ,RàfolsI,CarrilloL,GoicoecheaJ,VivesE,MañosaL,etal.Experimentsandmodelsofavalanchesinmartensites.JPhysIV1995;5.C8209–14.[189]QiaoJW,YangFQ,WangGY,LiawPK,ZhangY.Jerky-flowcharacteristicsforaZr-basedbulkmetallicglass.ScriptaMater2010;63:1081–4.[190]QiaoJW,ZhangY,LiawPK.SerratedflowkineticsinaZr-basedbulkmetallicglass.Intermetallics2010;18:2057–64.[191]ZhangY,ZhangWG,LinJP,HaoGJ,ChenGL,LiawPK.Glass-formingabilityandcompetitivecrystallinephasesforlightweightTi–Be-basedalloys.MetallMaterTransA2010;41:1670–6.[192]QiaoJW,WangS,ZhangY,LiawPK,ChenGL.LargeplasticityandtensileneckingofZr-basedbulk-metallic-glass-matrixcompositessynthesizedbytheBridgmansolidification.ApplPhysLett2009;94:151905.[193]WillcoxM,MysakT.AnintroductiontoBarkhausennoiseanditsapplications.InsightNDT;2004.[194]ZaiserM,MarmoB,MorettiP.The‘yieldingtransition’incrystalplasticity–discretedislocationsandcontinuummodels.In:Internationalconferenceonstatisticalmechanicsofplasticityandrelatedinstabilities;2005.[195]MiguelMC,VespignaniA,ZapperiS,WeissJ,GrassoJR.Complexityindislocationdynamics:model.MaterSciEng,A2001;309–310:324–7.[196]LaursonL,AlavaMJ.1/fNoiseandavalanchescalinginplasticdeformation.PhysRevE2006;74(6):066106.[197]CsikorFF,MotzC,WeygandD,ZaiserM,ZapperiS.Dislocationavalanches,strainbursts,andtheproblemofplasticformingatthemicrometerscale.Science2007;318(12):251–4.[198]IspanovityPD,GromaI,GyörgyiG,CsikorFF,WeygandD.Submicronplasticity:yieldstress,dislocationavalanches,andvelocitydistribution.PhysRevLett2010;105:085503.[199]TsekenisG,GoldenfeldN,DahmenKA.Dislocationsjamatanydensity.PhysRevLett2011;106:105501.[200]TsekenisG,UhlJT,GoldenfeldN,DahmenKA.Determinationoftheuniversalityclassofcrystalplasticity.EurophysicsLetters2013;101:36003.[201]KoslowskiM.Scalinglawsinplasticdeformation.PhilosMag2007;87(8–9):1175–84.[202]ChanPY,TsekenisG,DantzigJ,DahmenKA,GoldenfeldN.Plasticityanddislocationdynamicsinaphasefieldcrystalmodel.PhysRevLett2010;105:015502.[203]DahmenK,ErtasßD,Ben-ZionY.Gutenberg-Richterandcharacteristicearthquakebehaviorinsimplemean-fieldmodelsofheterogeneousfaults.PhysRevE1998;58(2):1494–501.[204]DuboisJM.Complexmetallicalloys:claritythroughcomplexity.NatMater2010;9:287–8.[205]LebyodkinMA,KobelevNP,BougheriraY,EntemeyerD,FressengeasC,LebedkinaTA,etal.Onthesimilarityofplasticflowprocessesduringsmoothandjerkyflowindilutealloys.ActaMater2012;60(3):844–50.[206]VinogradovA,LazarevA.Continuousacousticemissionduringintermittentplasticflowinalpha-brass.ScriptaMater2012;66(10):745–8.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9391[207]CuiC,JinT,SunX.EffectsofheattreatmentsontheserratedflowinaNi–Co–Cr-basesuperalloy.JMaterSci2011;46(16):5546–52.[208]HaleCL,RollingsWS,WeaverML.ActivationenergycalculationsfordiscontinuousyieldinginInconel718SPF.MaterSciEng,A2001;300(1–2):153–64.[209]DeCoomanBC,KimJ,LeeS.Heterogeneousdeformationintwinning-inducedplasticitysteel.ScriptaMater2012;66(12):986–91.[210]SongSX,NiehTG.Directmeasurementsofshearbandpropagationinmetallicglasses–anoverview.Intermetallics2011;19(12):1968–77.[211]RiceJR.Thelocalizationofplasticdeformation.North-HollandPublishingCompany;1976.p.207–20.[212]KlementW,WillensRH,DuwezPOL.Non-crystallinestructureinsolidifiedgold–siliconalloys.Nature1960;187(4740):869–70.[213]ZhangY,TanH,KongHZ,YaoB,LiY.GlassformingabilityofPr–(Cu,Ni)–Alalloysineutecticsystem.JMaterRes2003;18(3):664–71.[214]LiY,PoonSJ,ShifletGJ,XuJ,KimDH,LoefflerJF.Formationofbulkmetallicglassesandtheircomposites.MRSBull2007;32:624–8.[215]LiY.Bulkmetallicglasses:eutecticcoupledzoneandamorphousformation.JOM2005(March):60–3.[216]ZhangY,ZhaoDQ,WeiBC,WenP,PanMX,WangWH.FormationandpropertiesofZr48Nb8Fe8Cu12Be24bulkmetallicglass.JMaterRes2001;16(6):1675–9.[217]ZhangY,ZhaoDQ,WangRJ,WangWH.FormationandpropertiesofZr48Nb8Cu14Ni12Be18bulkmetallicglass.ActaMater2003;51:1971–9.[218]TanH,ZhangY,MaD,FengYP,LiY.Optimumglassformationatoff-eutecticcompositionanditsrelationtoskewedeutecticcoupledzoneintheLabasedLa–Al–(Cu,Ni)pseudoternarysystem.ActaMater2003;51:4551–61.[219]TanH,ZhangY,FengYP,LiY.SynthesisofaLa-basedbulkmetallicglassmatrixcomposite.PhilosMagLett2004;84(1):53–61.[220]ZhangY,TanH,LiY.Bulkglassformationof12mmrodinLa–Cu–Ni–Alalloys.MaterSciEng,A2004;375–377:436–9.[221]JingQ,ZhangY,WangD,LiY.AstudyoftheglassformingabilityinZrNiAlalloys.MaterSciEng,A2006;441:106–11.[222]TurnbullD.Underwhatconditionscanaglassbeformed?ContempPhys1969;10(5):473–88.[223]KimKB,WarrenPJ,CantorB,EckertJ.Structuralevolutionofnano-scaleicosahedralphaseinnovelmulticomponentamorphousalloys.PhilosMag2006;86:281–6.[224]BoettingerWJ.Growthkineticlimitationsduringrapidsolidification.Rapidlysolidifiedamorphousandcrystallinealloys.In:Proceedingsofthematerialsresearchsocietyannualmeeting;1982.[225]LiY,GuoQ,KalbJA,ThompsonCV.Matchingglass-formingabilitywithdensityofamorphousphase.Science2008;322:1816–9.[226]MihalkovicM,WidomM.AbinitiocalculationsofcohensiveenergiesofFe-basedglass-formingalloys.PhysRevB2004;70.1441071-12.[227]GreerAL,MaE.Bulkmetallicglasses:atthecuttingedgeofmetalsresearch.MRSBull2007;32:611–9.[228]BuschR,SchroersJ,WangWH.Thermodynamicsandkineticsofbulkmetallicglass.MRSBull2007;32(8):620–3.[229]ZhangT,LiR,PangSJ.Effectofsimilarelementsonimprovingglass-formingabilityofLa–Ce-basedalloys.JAlloyCompd2009;483:60–3.[230]LiR,PangSJ,MenH,MaCL,ZhangT.Formationandmechanicalpropertiesof(Ce–La–Pr–Nd)–Co–Albulkglassyalloyswithsuperglass-formingability.ScriptaMater2006;54:1123–6.[231]KimKB,WarrenPJ,CantorB.Glass-formingabilityofnovelmulticomponent(Ti33Zr33Hf33)–(Ni50Cu50)–Alalloysdevelopedbyequiatomicsubstitution.MaterSciEng,A2004;375–377:317–21.[232]KimKB.Devitrificationofnano-scaleicosahedralphasein(Ti0.33Zr0.33Hf0.33)50(Ni0.5Cu0.5)40Al10alloywithenlargingsupercooledliquidregion.MaterLett2005;59:1771–4.[233]KimKB,WarrenPJ,CantorB.Metallicglassformationinmulticomponent(Ti,Zr,Hf,Nb)–(Ni,Cu,Ag)–Alalloys.JNon-CrystSolids2003;317:17–22.[234]ZhangLC,XuJ.Glassformingabilityofmelt-spunmulticomponent(Ti,Zr,Hf)–(Cu,Ni,Co)–Alalloyswithequiatomicsubstitution.JNon-CrystSolids2004;347:166–72.[235]KimKB,ZhangY,WarrenPJ,CantorB.CrystallizationbehaviorinanewmulticomponentTi16.6Zr16.6Hf16.6Ni20Cu20Al10metallicglassdevelopedbyequiatomicsubstitutiontechnique.PhilosMag2003;83(20):2371–81.[236]KimKB,WarrenPJ,CantorB.Formationofmetallicglassesinnovel(Ti33Zr33Hf33)100ÀxÀy(Ni50Cu50)xAlyalloys.MaterTrans2003;44(3):411–3.[237]KimKB,YiS,HwangIS,EckertJ.Effectofcoolingrateonmicrostructureandglass-formingabilityofa(Ti33Zr33Hf33)70(Ni50Cu50)20Al10alloy.Intermetallics2006;14:972–7.[238]ZhangLC,KimKB,YuP,ZhangWY,KunzU,EckertJ.Amorphizationinmechanicallyalloyed(Ti,Zr,Nb)–(Ni,Cu)–Alequiatomicalloys.JAlloyCompd2007;428:157–63.[239]KimKB,WarrenPJ,CantorB.Structuralrelaxationandglasstransitionbehaviorofnovel(Ti33Zr33Hf33)50(Ni50Cu50)40Al10alloydevelopedbyequiatomicsubstitution.JNon-CrystSolids2007;353:3338–41.[240]BasuJ,RanganathanS.GlassformingabilityandstabilityofternaryNi-earlytransitionmetal(Ti/Zr/Hf)alloys.ActaMater2008;56:1899–907.[241]ZhangY,CantorB,KimKB,WarrenPJ.CrystallizationbehaviourinanewmulticomponentTi16.6Zr16.6Hf16.6Ni20Cu20Al10metallicglassdevelopedbytheequiatomicsubstitutiontechnique.PhilosMag2003;83:2371–81.[242]KimKB,WarrenPJ,CantorB,EckertJ.Crystallizationbehaviourofnovel(Ti33Zr33Hf33)100Àx(Ni50Cu50)xalloyswithX=48to55.JMetastableNanocrystMater2005;24–25:657–60.[243]InoueA,ZhangT,KoshibaH,MakinoA.NewbulkamorphousFe–(Co,Ni)–M–B(M=Zr,Hf,Nb,Ta,Mo,W)alloyswithgoodsoftmagneticproperties.JApplPhys1998;83(11):6326–8.[244]ZhangT,InoueA.Bulkglassyalloysin(Fe,Co,Ni)–Si–Bsystem.MaterTrans2001;42(6):1015–8.[245]ChenYY,HongUT,YehJW,SHihHC.MechanicalpropertiesofabulkCu0.5NiAlCoCrFeSiglassyalloyin288°Chighpuritywater.ApplPhysLett2005;87:261918.92Y.Zhangetal./ProgressinMaterialsScience61(2014)1–93[246]KimKB,WarrenPJ,CantorB,EckertJ.Enhancedthermalstabilityofthedevitrifiednanoscaleicosahedralphaseinnovelmulticomponentamorphousalloys.JMaterRes2006;21:823–30.[247]ZaddachAJ,NiuC,KochC,IrvingDL.MechanicalpropertiesandstackingfaultenergiesofNiFeCrCoMnhigh-entropyalloy.JOM2013.http://dx.doi.org/10.1007/s11837-013-0771-4.[248]ZhangC,ZhangF,ChenS,CaoW.Computationalthermodynamicsaidedhigh-entropyalloydesign.JOM2012;64(7):839–45.[249]KohnW,ShamLJ.Self-consistentequationsincludingexchangeandcorrelationeffects.PhysRev1965;140:A1133–8.[250]GaoMC,AlmanDE.Searchingfornextsingle-phasehigh-entropyalloycompositions.Entropy2013;15(10):4504–19.[251]WeiSH,FerreiraLG,BernardJE,ZungerA.Electronicpropertiesofrandomalloys:specialquasirandomstructures.PhysRevB1990;42(15):9622–49.[252]ZungerA,WeiSH,FerreiraLG,BernardJE.Specialquasirandomstructures.PhysRevLett1990;65(3):353–6.[253]JiangC,WolvertonC,SofoJ,ChenLQ,LiuZK.First-principlesstudyofbinaryBCCalloysusingspecialquasirandomstructures.PhysRevB2004;69(21):214202.[254]JiangC,WolvertonC,SofoJ,ChenLQ,LiuZK.First-principlesstudyofconstitutionalpointdefectsinB2NiAlusingspecialquasirandomstructures.ActaMater2005;53(9):2643–52.[255]WangAetal.First-principlesstudyofbinaryspecialquasirandomstructuresfortheAl–Cu,Al–Si,Cu–Si,andMg–Sisystems.Calphad2009;33(4):769–73.[256]JiangC.First-principlesstudyofternaryBCCalloysusingspecialquasi-randomstructures.ActaMater2009;57(16):4716–26.[257]ShinD,LiuZK.EnthalpyofmixingforternaryFCCsolidsolutionsfromspecialquasirandomstructures.Calphad2008;32(1):74–81.[258]JiangC.First-principlesstudyofCo3(Al,W)alloysusingspecialquasi-randomstructures.ScriptaMater2008;59(10):1075–8.[259]SovenP.Coherent-potentialmodelofsubstitutionaldisorderedalloys.PhysRev1967;156(3):809–13.[260]StocksGM,TemmermanWM,GyorffyBL.CompletesolutionoftheKorringa-Kohn-Rostokercoherent-potential-approximationequations:Cu–Nialloys.PhysRevLett1978;41(5):339–43.[261]SovenP.Applicationofthecoherentpotentialapproximationtoasystemofmuffin-tinpotentials.PhysRevB1970;2(12):4715–22.[262]AbrikosovIA,RubanAV,JohanssonB,SkriverHL.Totalenergycalculationsofrandomalloys:supercell,Connolly–Williams,andCPAmethods.ComputMaterSci1998;10(1–4):302–5.[263]VitosL,AbrikosovIA,JohanssonB.Anisotropiclatticedistortionsinrandomalloysfromfirst-principlestheory.PhysRevLett2001;87(15):156401.[264]HuangL,VitosL,KwonSK,JohanssonB,AhujaR.Thermoelasticpropertiesofrandomalloysfromfirst-principlestheory.PhysRevB2006;73(10):104203.´redniawaB,KaprzykS,GuillotM,FruchartD,etal.MagneticinteractionsintheMnFe1ÀxCoxPseriesof[265]ZachR,TobolaJ,Ssolidsolutions.JPhys:CondensMatter2007;19(37):376201.[266]Masuda-JindoK,HungVV,HoaNT,TurchiPEA.FirstprinciplescalculationsofthermodynamicandmechanicalpropertiesofhightemperatureBCCTa–WandMo–Taalloys.JAlloyCompd2008;452(1):127–32.´A,FruchartD.Synthesis,electronictransportandmagneticpropertiesof[267]HlilEK,StadnykY,GorelenkoY,RomakaL,HorynZr1ÀxYxNiSn,(x=0–0.25)solidsolutions.JSolidStateChem2010;183(3):521–6.[268]RazumovskiyVI,RubanAV,KorzhavyiPA.First-principlesstudyofelasticpropertiesofCr-andFe-richFe–Cralloys.PhysRevB2011;84(2):024106.[269]LiXQ,ZhangHL,LuS,LiW,ZhaoJJ,JohanssonB,etal.Elasticpropertiesofvanadium-basedalloysfromfirst-principlestheory.PhysRevB2012;86(1):014105.[270]WangY,GaoMC.Anabinitioapproachtothestudyofhighentropyalloys.Unpublishedwork;2012.[271]ShangSL,WangY,LiuZK.Thermodynamicfluctuationsbetweenmagneticstatesfromfirst-principlesphononcalculations:thecaseofBCCFe.PhysRevB2010;82(1):014425.[272]RaveloR,AguilarJ,BaskesM,AngeloJE,FultzB,HolianBL.FreeenergyandvibrationalentropydifferencebetweenorderedanddisorderedNi3Al.PhysRevB1998;57(2):862–9.[273]FultzB.Vibrationalthermodynamicsofmaterials.ProgMaterSci2010;55(4):247–352.[274]MuñozJA,LucasMS,DelaireO,WinterroseML,MaugerL,LiCW,etal.PositivevibrationalentropyofchemicalorderinginFeV.PhysRevLett2011;107(11):115501.[275]FultzB,AnthonyL,NagelLJ,NicklowRM,SpoonerS.PhonondensitiesofstatesandvibrationalentropiesoforderedanddisorderedNi3Al.PhysRevB1995;52(5):3315–21.[276]DelaireO,Swan-WoodT,FultzB.Negativeentropyofmixingforvanadium–platinumsolutions.PhysRevLett2004;93:185704.[277]GrimvallG.Thermophysicalpropertiesofmaterials.Amsterdam:North-HollandPublishingCompany;1999.[278]KresseG.Abinitiomoleculardynamicsforliquidmetals.JNon-CrystSolids1995;192–193:222–9.[279]HassKC,SchneiderWF,CurioniA,AndreoniW.First-principlesmoleculardynamicssimulationsofH2Oona-Al2O3(0001).JPhysChemB2000;104(23):5527–40.[280]AlfeD,GillanMJ,PriceGD.AbinitiochemicalpotentialsofsolidandliquidsolutionsandthechemistryoftheEarth’score.JChemPhys2002;116(16).[281]ZhangY,GuoG.PartitioningofSiandObetweenliquidironandsilicatemelt:atwo-phaseab-initiomoleculardynamicsstudy.GeophysResLett2009:36.[282]CalderinL,GonzalezDJ,GonzalezLE,LopezJM.Structural,dynamic,andelectronicpropertiesofliquidtin:anabinitiomoleculardynamicsstudy.JChemPhys2008;129(19).[283]GaneshP,WidomM.AbinitiosimulationsofgeometricalfrustrationinsupercooledliquidFeandFe-basedmetallicglass.PhysRevB2008;77(1).[284]ShengHW,LuoWK,AlamgirFM,BaiJM,MaE.Atomicpackingandshort-to-medium-rangeorderinmetallicglasses.Nature2006;439(7075):419–25.Y.Zhangetal./ProgressinMaterialsScience61(2014)1–9393[285]GaneshP,WidomM.Liquid–liquidtransitioninsupercooledsilicondeterminedbyfirst-principlessimulation.PhysRevLett2009;102:075701.[286]ChangYA,ChenSL,ZhangF,YanXY,XieFY,Schmid-FetzerR,etal.Phasediagramcalculation:past,presentandfuture.ProgMaterSci2004;49(3–4):313–45.[287]KattnerU.Thethermodynamicmodelingofmulticomponentphaseequilibria.JOM1997;49(12):14–9.[288]KaufmanL.Computercalculationofphasediagrams.NewYork:AcademicPress;1970.[289]AnthonyL,NagelLJ,OkamotoJK,FultzB.MagnitudeandoriginofthedifferenceinvibrationalentropybetweenorderedanddisorderedFe_[308]Al.PhysRevLett1994;73(22):3034–7.[290]FultzB,AnthonyL,RobertsonJL,NicklowRM,SpoonerS,MostollerM.PhononmodesandvibrationalentropyofmixinginFe–Cr.PhysRevB1995;52(5):3280–5.[291]BogdanoffPD,Swan-WoodTL,FultzB.PhononentropyofalloyingandorderingofCu–Au.PhysRevB2003;68(1):014301.[292]ZhaoJC.Combinatorialapproachesaseffectivetoolsinthestudyofphasediagramsandcomposition–structure–propertyrelationships.ProgMaterSci2006;51(5):557–631.[293]ZhaoJC.Thediffusion-multipleapproachtodesigningalloys.annualreviewofmaterialsresearch;annualreviews.PaloAlto;2005.p.51–73.[294]GaoMC,UnluN,ShifletGJ,MihalkovicM,WidomM.Re-assessmentofAl–CeandAl–Ndsystemsintegratedwithfirst-principleenergycalculationsandcriticalexperiments.MetallMaterTransA2005;36A:3269–79.[295]ShangS,LiuZJ,LiuZK.ThermodynamicmodelingoftheBa–Ni–Tisystem.JAlloyCompd2007;430(1–2):188–93.[296]ZhouSH,WangY,ChenLQ,LiuZK,NapolitanoRE.Solution-basedthermodynamicmodelingoftheNi–TaandNi–Mo–Tasystemsusingfirst-principlecalculations.Calphad2009;33(4):631–41.[297]ZhangLJ,WangJ,DuY,HuRX,NashP,LuXG,etal.ThermodynamicpropertiesoftheAl–Fe–Nisystemacquiredviaahybridapproachcombiningcalorimetry,first-principlesandCALPHAD.ActaMater2009;57(18):5324–41.˘anÖN,KingP,WidomM.ThermodynamicmodelingofthePd–Ssystemsupportedbyfirst-principles[298]HuRX,GaoMC,Dogcalculations.Calphad2010;34(3):324–31.[299]RollettAD,LeeSB,CampmanR,RohrerGS.Three-dimensionalcharacterizationofmicrostructurebyelectronback-scatterdiffraction.Annualreviewofmaterialsresearch;annualreviews.PaloAlto;2007.p.627–58.[300]RobertsonIM,SchuhCA,VetranoJS,BrowningN,FieldDP,JensenDJ,etal.Towardsanintegratedmaterialscharacterizationtoolbox.JMaterRes2011;26(11):1341–83.[301]PatalaS,MasonJK,SchuhCA.Improvedrepresentationsofmisorientationinformationforgrainboundaryscienceandengineering.ProgMaterSci2012;57(8):1383–425.[302]QuQ,XuJ.PatentCN101554686-A.[303]ChenK,XuJ,ZhaiQ.PatentCN101590574-A;CN101590574-B.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top