题目来源:673:
动态规划基础训练。
求出一个无序整数数组的最长递增子序列的数量。
题目有点绕,其实分解一下就是:
(1)求出最长递增子序列的长度len
(2)求长度为len的递增子序列有几条
题目就是求这个条数。
其实本质是最长递增子序列问题(LIS)。
只要在求最长递增子序列长度的同时计数就可以了。
LIS简单回顾
关于LIS可参考《算法概论》P157
算法
for j = 1, 2, ..., n
L(j) = 1 + max{L(i):(i, j)∈E}
return maxjL(j)
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
// handle special case
if (n <= 1) return n;
int length[n] = {1}; // length[i] : the length of the seq ends with the ith element
int count[n] = {1}; // count[i] : the number of seqs of length i
for (int i = 0; i < n; i++) length[i] = count[i] = 1;
for (int j = 0; j < n; j++) {
for (int i = 0; i < j; i++) {
if (nums[j] > nums[i]) {
if (length[i] >= length[j]) {
// add nums[j] into the seq which ends with the ith element, and the length becomes length[i]+1
length[j] = length[i] + 1;
count[j] = count[i];
} else if (length[i] + 1 == length[j]) {
// merge two seqs
count[j] += count[i];
}
}
}
}
int maxLen = 0;
for (int i = 0; i < n; i++) {
if (length[i] > maxLen) maxLen = length[i];
}
int re = 0;
for (int i = 0; i < n; i++) {
if (length[i] == maxLen) {
re += count[i];
}
}
return re;
}
};
O(n^2)
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- ryyc.cn 版权所有 湘ICP备2023022495号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务