您的当前位置:首页Apache Doris 系列: 入门篇-数据导入及查询

Apache Doris 系列: 入门篇-数据导入及查询

来源:锐游网

数据导入及查询

本文档主要介绍 Doris 的数据导入及数据查询。

数据导入方式

Doris 为了满足不同业务场景的数据接入需求,提供不丰富的数据导入方式,去支持不同的数据源:外部存储(HDFS,对象存储)、本地文件、消息队列(Kafka)及其他外部业务系统数据库(MySQL、Oracle、SQLServer、PostgreSQL等),支持同步和异步的方式将数据接入到 Doris 中。

Doris 数据计入方式及生态系统:

Broker Load

 是一种异步的数据导入方式,通过  进程访问并读取外部数据源(如:HDFS,对象存储(支持S3协议)),然后通过 MySQL 协议,通过 Doris SQL 语句的方式将导入任务提交到 Doris ,然后通过 show load 查看数据导入进度及状态。

这种导入方式可以以支撑数据量达数百 GB 的导入作业。该导入方式支持 Hive 数据源的导入。

支持的数据格式:csv、orc、parquet

因为Doris 表里的数据是有序的,导入方式需要占用 Doris BE 资源进行对数据进行排序,在大数据量的数据导入的时候尽可能避开业务使用高峰,在资源相对空闲的时候进行导入。

Spark Load

 通过借助于外部的 Spark 计算资源实现对导入数据进行排序,提高 Doris 大数据量的导入性能并且节省 Doris 集群的计算资源。主要用于初次迁移,大数据量导入 Doris 的场景。对于历史海量数据迁移降低 Doris 集群资源使用及负载有很好的效果。

这种方式需要借助于Broker服务,适用于迁移大数据量(TB 级别)的场景。

Spark 支持将 hive 生成的 bitmap 数据直接导入到 Doris。详见 。

支持的数据格式:csv、orc、parquet

Spark load 是一种异步导入方式,用户需要通过 MySQL 协议创建 Spark 类型导入任务,并通过 SHOW LOAD 查看导入结果

Stream Load

 是一种同步的数据导入方式。用户通过 HTTP 协议提交请求并携带原始数据(可以是文件,也可以是内存数据)创建导入。主要用于快速将本地文件或数据流中的数据导入到 Doris。导入命令同步返回导入结果。

通过 SHOW STREAM LOAD方式来查看 Stream load 作业情况,默认 BE 是不记录 Stream Load 的记录,如果你要查看需要在 BE 上启用记录,配置参数是:enable_stream_load_record=true ,具体怎么配置请参照 

这种导入方式支持两种格式的数据 CVS 和 JSON 。

Stream load 支持本地文件导入,或者通过程序导入实时数据流中的数据, 和  就是基于这种方式实现的。

Routine Load

 这种方式是以Kafka为数据源,从Kafka中读取数据并导入到Doris对应的数据表中,用户通过 Mysql 客户端提交 Routine Load数据导入作业,Doris 会在生成一个常驻线程,不间断的从 Kafka 中读取数据并存储在对应Doris表中,并自动维护 Kafka Offset位置。

通过SHOW ROUTINE LOAD来查看Routine load作业情况。

Insert Into

这种导入方式和 MySQL 中的 Insert 语句类似,Apache Doris 提供 INSERT INTO tbl SELECT ...; 的方式从 Doris 的表(或者ODBC方式的外表)中读取数据并导入到另一张表。或者通过 INSERT INTO tbl VALUES(...); 插入单条数据,单条插入方式不建议在生产和测试环境中使用,只是演示使用。

INSERT INTO tbl SELECT …这种方式一般是在Doris内部对数据进行加工处理,生成中间汇总表,或者在Doris内部对数据进行ETL操作使用

这种方式是一种同步的数据导入方式。

数据导入

本例我们以 Stream load 导入当时为例,将文件中的数据导入到我们的之前创建的表(expamle_tbl)中 。

CREATE TABLE IF NOT EXISTS test_doris.example_tbl
(
    `timestamp` DATE NOT NULL COMMENT "['0000-01-01', '9999-12-31']",
    `type` TINYINT NOT NULL COMMENT "[-128, 127]",
    `error_code` INT COMMENT "[-2147483648, 2147483647]",
    `error_msg` VARCHAR(300) COMMENT "[1-65533]",
    `op_id` BIGINT COMMENT "[-9223372036854775808, 9223372036854775807]",
    `op_time` DATETIME COMMENT "['0000-01-01 00:00:00', '9999-12-31 23:59:59']",
    `target` float COMMENT "4 字节",
    `source` double COMMENT "8 字节",
    `lost_cost` decimal(12,2) COMMENT "",
    `remark` string COMMENT "1m size",
    `op_userid` LARGEINT COMMENT "[-2^127 + 1 ~ 2^127 - 1]",
    `plate` SMALLINT COMMENT "[-32768, 32767]",
    `iscompleted` boolean COMMENT "true 或者 false"
)
DUPLICATE KEY(`timestamp`, `type`)
DISTRIBUTED BY HASH(`type`) BUCKETS 1
PROPERTIES (
    "replication_allocation" = "tag.location.default: 1"
);

我们创建一个本地文件 example_tbl.csv ,然后将下面的数据写入到这个 csv 文件中,最后我们通过 curl 命令行将这个文件中的数据导入到刚才我们创建的表里。

2022-9-06,1,101,None found,10000000000001,2022-9-06 12:23:24,1000001,2000001,2023.03,This is test doris import,10001,2,true
2022-9-05,2,102,Server Error,10000000000002,2022-9-05 15:23:24,1000003,2000003,202.03,This is test doris import,10002,3,false

我们通过下面的命令将数据导入到 Doris 表中

curl --location-trusted -u root: -T expamle_tbl.csv -H "column_separator:," -H "label:expamle_tbl_import_test" http://localhost:8030/api/test_doris/example_tbl/_stream_load

导入完成后会返回下面这样的 JSON 格式的响应数据。

{
    "TxnId": 14031,
    "Label": "expamle_tbl_import_test",
    "TwoPhaseCommit": "false",
    "Status": "Success",
    "Message": "OK",
    "NumberTotalRows": 2,
    "NumberLoadedRows": 2,
    "NumberFilteredRows": 0,
    "NumberUnselectedRows": 0,
    "LoadBytes": 250,
    "LoadTimeMs": 142,
    "BeginTxnTimeMs": 1,
    "StreamLoadPutTimeMs": 17,
    "ReadDataTimeMs": 0,
    "WriteDataTimeMs": 24,
    "CommitAndPublishTimeMs": 96
}
  1. Status:导入任务的状态
  2. NumberTotalRows : 我们要导入的总数据记录数
  3. NumberLoadedRows:导入成功的记录数

查询

下面我们对刚才导入的数据表进行查询

select * from example_tbl;

查询指定字段并进行排序

mysql> select timestamp,error_code,op_id from example_tbl order by error_code desc;
+------------+------------+----------------+
| timestamp  | error_code | op_id          |
+------------+------------+----------------+
| 2022-09-05 |        102 | 10000000000002 |
| 2022-09-06 |        101 | 10000000000001 |
+------------+------------+----------------+
2 rows in set (0.02 sec)

Doris 支持多种 select 用法,包括:Join,子查询,With 子句 等,具体参照 。

函数

Doris 提供了丰富的函数支持,包括:日期函数、数组函数、地理位置函数、字符串函数、聚合函数、Bitmap函数、Bitwise函数、条件函数、JSON函数、Hash函数、数学函数、表函数、窗口函数、加密函数、脱敏函数等,具体可以参照 。

外部表

Doris 支持多种数据的外部表: 、  ,  ,  ,  。

其中 ODBC 外部表我们支持: MySQL、PostgreSQL、Oracle、SQLServer。

创建好外部表之后,可以通过查询外部表的方式将外部表的数据接入到 Doris 里,同时还可以和 Doris 里的表进行关联查询分析。

查询分析

Doris 支持多种方式分析查询瓶颈及优化查询性能

一般情况下出现慢查询,我们可以通过调整一个 Fragment 实例的并行数量 set parallel_fragment_exec_instance_num = 8; 来设置查询并行度,从而提高 CPU 资源利用率和查询效率。详细的参数介绍及设置,参考 。

我们也可以通过分析 Doris SQL 执行计划和 Profile 来定位分析

查看执行计划

explain select timestamp,error_code,op_id from example_tbl order by error_code desc;

查看 Profile

首先我们需要开启Profile

set enable_profile = true;

然后执行 SQL,我们就可以看到这个 SQL 的 Profile

更详细讲解请参照 。

 

因篇幅问题不能全部显示,请点此查看更多更全内容

Top